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Abstract

We develop a flexible semi-structural time-series model to estimate jointly several macroe-
conomic “stars” — i.e., unobserved long-run equilibrium levels of output (and growth rate
of output), the unemployment rate, the real rate of interest, productivity growth, the price
inflation, and wage inflation. The ingredients of the model are in part motivated by eco-
nomic theory and in part by the empirical features necessitated by the changing economic
environment. Following the recent literature on inflation and interest rate modeling, we
explicitly model the links between long-run survey expectations and stars to improve the
stars’ econometric estimation. Our approach permits time variation in the relationships
between various components, including time variation in error variances. To tractably esti-
mate the large multivariate model, we use a recently developed precision sampler that relies
on Bayesian methods. The by-products of this approach are the time-varying estimates of
the wage and price Phillips curves, and the pass-through between prices and wages, both of
which provide new insights into these empirical relationships’ instability in US data. Gener-
ally, the contours of the stars echo those documented elsewhere in the literature – estimated
using smaller models – but at times the estimates of stars are different, and these differ-
ences can matter for policy. Furthermore, our estimates of the stars are among the most
precise. Lastly, we document the competitive real-time forecasting properties of the model
and, separately, the usefulness of stars’ estimates if they were used as steady-state values in
external models.
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1. Introduction

The estimates of long-run equilibrium levels of macroeconomic variables (often denoted

with the “star” symbol) are of central importance in macroeconomics. These long-run levels

are thought to reflect the fundamental structure of the economy in the absence of shocks.

Hence, they are used as reference points, and deviations from these long-run levels reflect

cyclical and idiosyncratic fluctuations. These stationary cyclical fluctuations typically serve as

the source data for macroeconomic models (e.g., Smets and Wouters, 2003). However, effective

identification of cyclical fluctuations in any macroeconomic aggregate requires knowledge of its

long-run equilibrium.

In this paper, we estimate jointly seven macroeconomic stars of broader interest to macroe-

conomists and policymakers: the level of potential output (gdp-star), the growth rate of poten-

tial output (g-star), the long-run equilibrium levels of the unemployment rate (u-star), the real

short-term interest rate (r-star), labor productivity growth (p-star), price inflation (pi-star),

and the nominal wage inflation (w-star).1 The assumption that a long-run equilibrium exists

implies that in the long run, the economy is growing at potential, price inflation is growing

at its trend rate, the unemployment rate has no cyclical pressure and only reflects structural

factors, nominal wages grow at a rate equal to the sum of labor productivity growth and price

inflation, and the real interest rate reflects the rate consistent with output growing at potential

and stable inflation.2

In practice, determining the values of these stars is difficult because stars and some of their

determinants are unobserved (see Weber, Lemke, and Worms, 2007). To infer the estimates

of the stars, economists apply a range of econometric methods to observable historical data.3

The multivariate unobserved components (UC) models, which are statistical models that use

economic theory to frame the empirical specification, have been shown to provide reasonable

estimates of the stars (e.g., Kuttner, 1994; Laubach and Williams, 2003; Basistha and Nelson,

2007; Chan, Koop, and Potter, 2016). Hence, they are the dominant methods for obtaining

estimates of the stars. However, with few exceptions, the popular multivariate UC models

that estimate time-varying stars focus on a small number of observables, often just two or

three, and minimal structure (e.g., Laubach and Williams, 2003). Studies that entertain more

variables have abstracted from important empirical features such as time-varying parameters

and stochastic volatility (e.g., Hasenzagl, Pellegrino, Reichlin, and Ricco, 2020; Del Negro et al.,

1The subset of these stars, p-star, g-star, u-star, and r-star, reflect the fundamental structural features of the
economy, whereas others, pi-star and w-star, are thought to be influenced by central banks and monetary policy.

2The literature has referred to the concept of long-run equilibrium using different terminologies, such as
“natural,” “neutral,” “trend,” “steady-state,” and “long-run.” There are subtle differences among them, but
they can be interpreted as the same for the purpose of this paper. In some studies, especially those using
dynamic stochastic general equilibrium (DSGE) models, the concept of the natural rate refers to medium-horizon
equilibrium, and in these same models, the concept of steady state is used to refer to the long-run equilibrium.

3The methods range from statistical univariate filters (e.g., Hodrick and Prescott, 1997; Ashley and Ver-
brugge, 2008) to multivariate models, including semi-structural time-series models (e.g., Pescatori and Turunen,
2016; Morley and Wong, 2020), and fully structural DSGE models (e.g., Del Negro, Giannone, Giannoni, and
Tambalotti, 2017.
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2017; Fleischman and Roberts, 2011). A priori, one would expect a framework based on greater

information that explicitly permits (contemporaneous) interactions between stars and between

cyclical components, and a richer structure to provide more reliable estimates of the objects of

interest (e.g., stars) than frameworks that ignore them.

Accordingly, in this paper, we take on the challenge of jointly estimating several macroeco-

nomic stars simultaneously, including g-star (and gdp-star), u-star, r-star, p-star, pi-star, and

w-star, using a semi-structural time-series model. For each star, we formulate a rich structure

whose elements are guided by past research and informed by economic theory. For example,

econometric estimation of r-star is informed by various sources: the investment-savings (IS)

equation, the Taylor-type rule, the equation linking g-star and r-star, and the equation relat-

ing r-star to survey expectations. We allow for time variation in important macroeconomic

relationships and error variances. Fernández-Villaverde and Rubio-Ramı́rez (2010), Koop and

Korobilis (2010), and Carriero, Clark, and Marcellino (2019), among many others, highlight the

importance of allowing for stochastic volatility in macroeconomic models.4 Incorporating these

empirical features should better distinguish between cyclical fluctuations and lower-frequency

movements in the macroeconomic aggregates considered in this paper.

We extend the Chan, Clark, and Koop (2018) – henceforth CCK – approach of using long-

run survey expectations to improve pi-star precision to other macroeconomic stars. Specifically,

for each macroeconomic variable of interest, we explicitly model the link between the unobserved

“star” and the expectations about the star contained in the Blue Chip survey of economic fore-

casters (or as reported by the Congressional Budget Office [CBO] when the survey estimate

is not available).5 In a high-dimensional model like ours, the use of long-run survey expecta-

tions, which are direct measures of stars, could help anchor model-based estimates of stars to

reasonable values (especially in times of heightened uncertainty) and potentially improve the

precision of the estimates. We estimate the feature-rich UC model using Bayesian techniques,

specifically the efficient sampling techniques developed in Chan, Koop, and Potter (2013) and

the precision sampler proposed in Chan and Jeliazkov (2009).

All in all, the combination of time-varying parameters, SV, joint modeling of multiple stars,

implementation of an expanded structure, and allowing for a direct connection between stars

and long-term survey expectations is what differentiates our UC model from those in the existing

literature. Many popular UC models could be viewed as special cases of our larger UC model,

which facilitates model comparison. We note that among the stars considered, w-star has

received less attention in the literature. Our UC model’s ability to provide real-time estimates

of w-star and its model-based decomposition into its determinants p-star and pi-star, as implied

4To the best of our knowledge, features such as time-varying parameters and stochastic volatility (SV) have
not been implemented in a multivariate UC framework beyond a system consisting of at most four variables
(e.g., Berger, Everaert, and Vierke, 2016). Stock and Watson (2016) implement a UC model with SV (but not
time-varying parameters) to estimate pi-star using 18 disaggregated components of aggregate inflation.

5The long-run survey expectations can be thought of as a hybrid forecast because it combines judgment based
on a range of information and forecast derived from a range of modeling approaches. Our use of such a hybrid
forecast implicitly serves as an additional channel through which the issue of omitted variable bias is mitigated.
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by economic theory, is a novel contribution. This specific decomposition is useful to monetary

policymakers, who often refer to developments in nominal wages to support their forecasts and

related discussions on price inflation and employment.

Our results indicate that there are payoffs to modeling stars jointly using a larger multivari-

ate UC model. The metric of Bayesian model comparison generally favors our larger UC model

over smaller-scale UC models. The model yields credible estimates of stars and the output gap.

For example, the output gap estimate is similar to the CBO estimate based on a production

function approach. Generally, the contours of stars echo those documented elsewhere in the

literature but at times are different, and these differences can matter for policy. For example,

let’s consider pi-star. From 2000 to 2010, our UC model has an estimate of the pi-star sta-

ble at or close to 2%, whereas pi-star from a popular univariate model (of Stock and Watson,

2007) displays notable fluctuations around 2%, and the bivariate model of CCK indicates a

stable pi-star about a few tenths below 2%. These differences matter for central banks tasked

with inflation targeting. Compared to some of the popular UC models and the smaller-scale

restricted variants of our larger UC model, the precision estimates of the stars and the output

gap from our UC model are among the most precise, where precision is measured as the width

of 90% credible intervals. The model’s reliance on long-term survey expectations data is the key

reason for this improved precision.6 Survey expectations have played a crucial role in guiding

the model-based assessment of stars during the COVID-19 pandemic, a period of heightened

uncertainty. The accuracy of our UC model’s real-time point and density forecasts rivals and,

in some cases, outperforms hard-to-beat benchmarks, including small-scale UC models.

We also demonstrate the usefulness of our estimated stars as terminal values for external

models. Previous research shows that forecasting models, such as steady-state vector autore-

gressive (VAR) models, often improve their forecast accuracy by using external information

about steady states informed by long-run survey expectations (e.g., Wright, 2013). Using a

real-time forecasting comparison, we show that if we were to inform steady states in a VAR

with the stars from our UC model, gains in forecast accuracy for some of the variables would be

achieved compared to the standard approach relying on survey expectations. Hence, our frame-

work provides a potential source for obtaining the stars’ estimates in real time. An advantage

of our framework compared to surveys is that it provides estimates of stars (steady states) for

variables not covered by surveys (e.g., w-star) and offers both point and uncertainty estimates.

We summarize three additional findings. First, we find that the empirical evidence in the

link between r-star and g-star, as implied by theory, is weak (consistent with Hamilton, Harris,

Hatzius, and West, 2016; Lunsford and West, 2019), but by bringing survey expectations into the

model, the link becomes stronger (providing support to Laubach and Williams, 2016). Second,

our results indicate economically and statistically significant evidence of time variation in the

model parameters capturing macroeconomic relationships and strong support for SV’s inclusion

6Our precision estimates are on a par with recent studies highlighting the improved precision of stars derived
from their approaches (e.g., r-star by Del Negro et al., 2017; u-star by Crump, Eusepi, Giannoni, and Şahin,
2019; pi-star by CCK).
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in the model equations. It lends support to the popular narratives of: “The price Phillips curve

has weakened over time,” “The wage Phillips curve is alive,” and “There is weakening in the

procyclicality of labor productivity.” Third, a comparison between final and real-time estimates

of the stars indicates that their broad movements have generally tracked each other closely.

We view this as a valuable finding because it suggests that we have made some progress in

mitigating the well-known difficulties associated with the real-time estimation of the stars.

In recent years, several papers have provided estimates of the stars using UC models with

more indicators and or an expanded structure. For example, Johannsen and Mertens (2021)

[henceforth JM], Pescatori and Turunen (2016), Del Negro et al. (2017), Brand and Mazelis

(2019), González-Astudillo and Laforte (2020), among others, have examined the roles of addi-

tional determinants in explaining r-star.7 None of these studies feature time-varying parame-

ters, and only JM allows for SV, but their model size is significantly smaller than ours. Chan,

Koop, and Potter (2016) [henceforth CKP] illustrate the value of modeling u-star and pi-star

as bounded random walk processes in a bivariate Phillips curve. More recently, using fixed-

parameter UC models, Crump et al. (2019) estimate u-star by combining a range of labor market

indicators across demographic groups and survey expectations of inflation, and Hasenzagl et al.

(2020) jointly estimate pi-star, u-star, gdp-star (and output gap).8

The paper is organized as follows. The next section describes in detail the econometric

model and its variants. Section 3 describes the data and estimation. Section 4 presents and

discusses in detail the estimates of stars and other model parameters. Section 5 reports the

real-time forecasting results and a discussion comparing real-time and final estimates of stars.

Section 6 illustrates the ability of the model to handle the COVID-19 pandemic data. Section

7 concludes. This paper has a supplementary online appendix that lists detailed Bayesian

estimation steps and some additional results.

2. Empirical Macro Model and Variants

The ingredients of our macroeconomic econometric model are guided both by economic the-

ory and by empirical considerations – namely, features that previous research has demonstrated

to be empirically relevant. These features include stochastic volatility and time-varying pa-

rameters, which in turn imply time-varying predictability. Collectively, these empirical features

permit modeling changing macroeconomic relationships in a flexible way.

We represent our empirical model using six sets of equations, which we denote blocks. These

7Pescatori and Turunen (2016) enrich the underlying structure to estimate r-star. In particular, to extract
a reliable estimate of the output gap, they bring additional information from the Congressional Budget Office’s
(CBO) estimate of the output gap by treating it as a noisy measure of the “true” output gap.

8Morley and Wong (2020) and Chan (2019) propose an alternative modeling framework based on VARs to
estimate the long-run equilibrium values. The advantage of the VAR-based framework is the ability to handle
larger amounts of information conveniently and flexibly compared to UC models. On the other hand, the
advantage of UC modeling, as emphasized by CKP, is the availability of the direct estimates of stars, which in
the case presented here proves quite convenient to allow for direct modeling of the relationships between various
stars.
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six blocks, which allow for contemporaneous interactions between them, characterize the joint

dynamics of the unemployment rate, output growth, labor productivity growth, price inflation,

nominal wage inflation, nominal interest rate, and corresponding stars. To be sure, the model

assumes that all innovations are uncorrelated both serially and across equations. However, we

emphasize that any assumed current period correlations between the cyclical components and

or between stars are directly modeled via the model equations that define the contemporaneous

relationships between the components (e.g., the cyclical output gap at time t with the cyclical

unemployment gap at t; r-star and g-star).

Before we describe the model, we provide some necessary background information, including

the econometric definition of the star and the usefulness of long-run survey expectations in the

estimation of stars.

2.1. The econometric notion of a long-run equilibrium

Following CCK, Mertens (2016), Lee and Nelson (2007), and Morley (2002), among many,

this paper defines the long-run equilibrium (or star) of a particular macroeconomic series as

its infinite-horizon forecast conditional on the current information set. This definition of a

star is consistent with the notion of Beveridge-Nelson trend decomposition, and an extensive

literature has adopted this approach to estimate stars. Equivalently, as commonly defined in the

trend estimation literature, the infinite-horizon forecast could be viewed as an estimate of trend

conditional on the current information set (e.g., CCK, Garcia and Poon, 2018, Mertens, 2016,

Lee and Nelson, 2007, Morley, 2002). As discussed in Mertens (2016), among others, different

information sets would likely yield different estimates of the infinite-horizon forecast (or trend).

Mertens showed that including survey projections of long-term inflation (hereafter long-run

survey forecasts) in the information set led to more precise and forward-looking estimates of

trend inflation.

The link between the infinite-horizon forecast and the underlying trend is described well

by the unobserved components (UC) model (see Laubach and Williams, 2003; Lee and Nelson,

2007; Mertens, 2016; CCK). In a UC model, a series (Yt) is typically represented as the sum of

a nonstationary trend component Y ∗t , which is assumed to evolve slowly and a stationary cycle

Y c
t , whose infinite-horizon conditional expectation is assumed to be zero. Accordingly,

Yt = Y ∗t + Y c
t . (1)

The trend component Y ∗t is interpreted as the limiting forecast of the series (conditional on

the information set It) as the forecast horizon tends to infinity,

lim
j→∞

E[Yt+j |It] = Y ∗t . (2)

Differencing the above equation yields,
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Y ∗t = Y ∗t−1 + lim
j→∞

E[Yt+j |It]− lim
j→∞

E[Yt+j |It−1] = Y ∗t−1 + et, et ∼ N(0, σ2
e). (3)

which suggests a random walk process for the trend Y ∗t .9 It also suggests a stationary,

ergodic mean-zero process for Y c
t .

Intuitively, the above set of assumptions implies that once the effects of the shocks have

fully played out, the macroeconomic series of interest, Yt, gravitates to its underlying trend

level, Y ∗t .

As discussed in CCK, various statistical and econometric models could fit within the above-

specified decomposition. This paper formulates a specific unobserved components time-series

model and its variants.

2.2. The role of survey expectations

As discussed in the introduction, an important contribution of this paper is to provide a

direct role for long-run survey expectations in refining the stars’ estimates. Specifically, we follow

the approach of CCK (and Pescatori and Turunen, 2016). These papers explicitly estimate an

equation linking the observed measure of a long-run forecast obtained from external sources

(survey in the case of CCK and CBO projection of the output gap in Pescatori and Turunen

to an unobserved object of interest. We extend their approach to the macroeconomic variables

considered in this paper.

Several papers have documented an essential role of long-run survey (and institutional)

forecasts in helping refine the econometric estimation of model parameters, including the latent

components (e.g., pi-star: Kozicki and Tinsley, 2012; Mertens, 2016; Mertens and Nason, 2020;

CCK; gdp-star: Pescatori and Turunen, 2016; r-star: Del Negro et al., 2017). Specifically,

Mertens and Nason (2020), CCK, Mertens (2016), and Kozicki and Tinsley (2012), in using

different methodologies (in combining survey data with model forecasts) to estimate the trend

in US inflation, show that long-run survey forecasts of inflation deliver crucial additional infor-

mation (beyond the recent inflation history) in refining trend estimates and improving model

fit. In a similar vein, Pescatori and Turunen (2016) document the usefulness of the CBO’s pro-

jection of the potential output gap in improving their model’s output gap precision. It is this

particular literature that motivates us to consider long-run survey forecasts in our large-scale

econometric model.

The advantage of survey (and institutional) forecasts stems from the fact that they could be

viewed as hybrid forecasts, i.e., a combination of judgment and forecasts derived from various

modeling approaches. The fact that human judgment enters into survey expectations is an

9The commonly adopted assumption of modeling Y ∗
t as a random walk is partly due to consensus among

macroeconomists that the factors driving the long-run equilibrium levels are perceived to be quite persistent
(e.g., Lee and Nelson, 2007). In practice, the assumption of a (driftless) random walk has generally worked quite
well, in that it has provided reasonable estimates of the stars (e.g., Clark, 1987; Kuttner, 1994; Laubach and
Williams, 2003; Mertens, 2016).
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important reason for their success. As discussed by Kozicki and Tinsley (2012) and others, the

good forecasting properties are partly because survey participants have at their disposal a wide

range of indicators, including central bank communications, and information about changes in

the tax laws, etc. The patterns gleaned from this large information set can help shape opinions,

including any perceived structural change, which can immediately influence expectations about

the long run.

The usefulness of this hybrid forecast measure is appealing from both theoretical and prac-

tical perspectives. From a theoretical standpoint, the notion of such a type of hybrid forecast

is well-aligned with the New-Keynesian view that emphasizes the importance of allowing for

interlinkages between the current state of the economic variables and their expectations about

the future in determining the relevant stars (see Weber, Lemke, and Worms, 2007).

From a practical point of view, such a hybrid measure helps limit the number of variables

(i.e., information) that need to be brought into the model. Put differently, explicitly utilizing

long-run survey expectations through an equation linking these expectations to the correspond-

ing model’s latent objects could be thought of as a shortcut to enrich the necessary information

set used in model estimation. Furthermore, in high-dimensional models, such as the one de-

veloped in this paper, the use of long-run survey projections, which are targeted and direct

measures of stars, could help anchor model-based estimates of stars to reasonable values and

have the potential to improve precision of the estimates.

Accordingly, in this paper, with the exceptions of nominal wage inflation and labor pro-

ductivity, for each of the remaining four variables, we model a direct link between long-run

survey projections (or the long-run CBO projections in the years for which survey projections

are unavailable) and the corresponding star using the following econometric equations:10

Zjt = Cjt + βjj∗t + εzjt , ε
zj
t ∼ N(0, σ2

zj), j = π, u, g, r (4)

Cjt = Cjt−1 + εcjt , ε
cj
t ∼ N(0, σ2

cj), j = π, u, g, r (5)

where π refers to price inflation, u refers to the unemployment rate, g refers to real GDP

growth, r refers to the real interest rate, Zjt refers to the long-run survey forecast corresponding

to the variable j, and j∗t is the unobserved j star.

Cjt is a time-varying intercept assumed to evolve as an RW process to possibly capture the

permanent wedge between the survey estimate and the model-based star. This wedge can arise

for several reasons, including the fact that star is assumed to be the infinite-horizon forecast,

whereas the survey forecast refers to the average forecast for the five-year period starting seven

years into the future in the case of BC and the ten-year-ahead forecast in the case of the SPF

(for price inflation).

10For the long-run inflation forecast, we use the Survey of Professional Forecasters (SPF)/PTR, and for the
long-run forecasts of the other three variables, we use the Blue Chip (BC) survey.
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The above set of equations defines a simplistic and flexible relationship between the long-run

survey expectations and the star.11

2.3. Unemployment block

The long-run equilibrium level of unemployment (u-star) is the unemployment rate that

prevails when output is growing at potential, and the economy adds jobs so as to maintain

the full-employment level. This nonzero equilibrium level of unemployment is primarily the

result of labor market imperfections caused by the frictional and structural aspects of the labor

markets.

As discussed in Crump et al. (2019), two approaches are commonly used to estimate u-star.

The first approach applies UC modeling to detailed labor market data (such as job vacancies,

firms’ recruiting intensity, demographic changes, flows into and out of unemployment) to extract

respective trends. These trends are used to construct implied estimates of u-star (e.g., Daly,

Hobijn, Şahin, and Valletta, 2012; Davis, Faberman, and Haltiwanger, 2013; Barnichon and

Mesters, 2018; Tasci, 2012). The second approach uses a combination of information from

prices (and or nominal wages, survey expectations) and the estimated Phillips curve relationship

between price inflation and the aggregate unemployment rate to back out the estimate of u-

star.12 Various modeling techniques ranging from parsimonious UC modeling to structural

DSGE models are applied to estimate the Phillips curve relationship (e.g., Staiger, Stock, and

Watson, 1996; Orphanides and Williams, 2003; Lee and Nelson, 2007; Gaĺı, 2011; CKP).

Following CKP, we posit that the observed unemployment rate is decomposed into a (bounded)

RW trend component (u-star) and a stationary cyclical component. The cyclical component

is modeled as an AR(2) process. The use of a parsimonious (time-invariant) AR2 process to

identify the cyclical component of the unemployment rate is a commonly used assumption, in

our case motivated by a recent string of empirical studies, e.g., Lee and Nelson (2007), Gaĺı

(2011), Stella and Stock (2015), CKP, Tallman and Zaman (2017), and Gaĺı and Gambetti

(2019), who all document reasonable patterns of the cyclical unemployment component (i.e.,

movements in this component correlate quite well with the NBER business cycle).13

More generally, the assumption of an AR2 to model the cyclical component of macroeco-

nomic variables has a long tradition, going back to at least Clark (1987). However, because we

are also modeling the output gap (i.e., the level of real GDP minus the level of potential real

GDP), we depart from the previous literature by augmenting the AR2 unemployment gap with

11Note that we adopt a relatively less flexible relationship between survey forecasts and stars than CCK.
12As mentioned in Crump et al. (2019), one of the criticisms of this approach is that it will be affected by the

breakdown of the Phillips curve relationship post-2007. However, by allowing time variation in the coefficients
capturing the price and wage Phillips curve relationships, as we do, our approach should face less of a problem.
In addition, as illustrated in Del Negro, Giannoni, and Schorfheide (2015) and Clark and Doh (2014) including
information from long-run survey expectations of inflation (as we do) should further help capture the inflation
behavior in the post-2007 period.

13CKP explore the empirical importance of allowing for time variation in the parameters of an AR2 process,
and find that the data prefer the time-invariant AR2 process, hence validating the widely used assumption of a
simple AR2 process.
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the output gap (denoted ogap) as an additional explanatory variable. Sinclair (2009), Grant

and Chan (2017a), and Berger, Everaert, and Vierke (2016), among several others, document

the empirical importance of jointly modeling the unemployment rate gap and the output gap.

Similarly, as shown later, we add information from the unemployment gap when modeling

the output gap. We find that the joint modeling of the output gap and the unemployment gap

is empirically and economically useful (confirming previous research findings, e.g., Fleischman

and Roberts, 2011). In addition, joint modeling of both the output gap and the unemployment

gap allows us to estimate the strength of the relationship between the two cyclical components,

popularly known as Okun’s law. In equation (7), the coefficient φu captures the contempo-

raneous relationship between the output gap and the cyclical unemployment rate gap. The

estimate,
1−ρu1−ρu2

φu , could be interpreted as the Okun’s law coefficient.

We note that when jointly modeling output and the unemployment rate, most researchers

assume a common cyclical component between the two. However, in light of the empirical evi-

dence that cyclical unemployment displays more persistence than the output gap (e.g., Berger,

Everaert, and Vierke (2016)), we model two separate cycles linked to each other via the Okun’s

law relationship. As shown in Berger, Everaert, and Vierke (2016), in a specification that en-

tertains two separate cycles (cyclical unemployment and the output gap), the data support a

time-invariant parameter describing the Okun’s law relationship. In contrast, a specification

with a common cyclical component favored a time-varying Okun’s law relationship (adding

support to Knotek II, 2007).

In a nutshell, the inference of Berger, Everaert, and Vierke (2016) suggests that time vari-

ation in the parameter capturing Okun’s law reflects the sluggish response of the cyclical un-

employment rate to movements in the output gap. Once they allowed for a sluggish response

of the cyclical unemployment rate by adding persistence, via a one-period lag of the cyclical

unemployment rate, evidence of a time-varying Okun coefficient disappears. We found similar

evidence. Hence, we adopt the modeling of two separate cycles and a time-invariant Okun’s

law relationship for our baseline setup; this has the added advantage of requiring estimation of

significantly fewer parameters.14

With the exception of CKP, most of the literature models u-star as a driftless RW. The

use of an unrestricted RW process has empirically been shown to work well, but CKP show

that modeling u-star as a bounded RW process is even better. They use bounds because,

by construction, the unemployment rate is a bounded variable, which implies that the long-

run equilibrium in the labor market would restrict the movements in u-star within a bounded

interval.15 Accordingly, we model u-star as a bounded RW, where the bounds’ values are fixed

14Bayesian model comparison assessment slightly preferred the approach of two separate cycles with a time-
invariant Okun’s law compared to a common cycle with a time-varying Okun’s law parameter. Also, we note
that Sinclair (2009) and Grant and Chan (2017b) model two separate cycles, linked through a time-invariant
parameter.

15CKP argue that economic forces that govern the movements in u-star are slow-moving and those forces would
not cause the unemployment rate to fall to levels close to zero or to levels that are higher than the previous peaks
caused by recessions.
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at 3.5% (lower bound) and 7.5% (upper bound).16 17

Ut = U∗t + U ct (6)

Ut − U∗t = ρu1(Ut−1 − U∗t−1) + ρu2(Ut−2 − U∗t−2) + φuogapt + εut , ε
u
t ∼ N(0, σ2

u) (7)

where, ρu1 + ρu2 < 1, ρu2 − ρu1 < 1, and |ρu2 | < 1

U∗t = U∗t−1 + εu∗t , ε
u∗
t ∼ TN(au − U∗t−1, bu − U∗t−1; 0, σ2

u∗) (8)

where the notation TN(a, b;µ, σ2) refers to normal distribution with mean µ and variance

σ2 but truncated in the interval (a, b).

Lastly, the equation relating long-run survey projections of the unemployment rate, Zu to

U∗,

Zut = Cut + βuU∗t + εzut , ε
zu
t ∼ N(0, σ2

zu) (9)

Cut = Cut−1 + εcut , ε
cu
t ∼ N(0, σ2

cu) (10)

2.4. Output block

We are interested in both the potential output (i.e., gdp∗) and the growth rate in potential

output (i.e., g∗). To feasibly estimate both of these latent processes, we follow the commonly

adopted approach, which decomposes the level of aggregate output into the level of potential

output and a cyclical component (output gap), where the cyclical component is defined as the

deviation of the observed aggregate output level from potential output. This simple decompo-

sition has a long tradition going back to Harvey (1985) and Clark (1987).

gdpt = gdp∗t + ogapt (11)

where gdp ≡ log(GDP ) and gdp∗ refers to potential output, which is unobserved.

A common approach to model gdp∗ is to assume a random walk with a time-varying drift

term (i.e., the local-level trend process), where the time-varying drift term (interpreted as g∗)

is assumed to follow a random walk process (to allow for a stochastic g∗). More recently, Grant

and Chan (2017b) show that a model where gdp∗ is assumed to follow a second-order Markov

16These values are informed by estimating the CKP model over our estimation sample, and are close to values
reported in CKP based on their estimation sample. As a further check, most estimates of the u-star reported in
the commonly cited literature fall within the bounds we use in this paper.

17Mertens (2014), Berger, Everaert, and Vierke (2016), Stella and Stock (2015), and Tallman and Zaman
(2017) provide evidence in support of SV in the cyclical components of the unemployment rate and the output
gap. Accordingly, in a future revision of the paper, we will allow for SV in the cyclical components of the
unemployment rate (i.e., equation 7) and the output gap (i.e., equation 14).
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process fits the data better compared to the model where gdp∗ is assumed to be a random walk

with time-varying drift. Hence, we follow Grant and Chan (2017b) and model gdp∗ as

gdp∗t = 2gdp∗t−1 − gdp∗t−2 + εgdp∗t , εgdp∗t ∼ N(0, σ2
gdp∗) (12)

Which can be re-written as

4gdp∗t = 4gdp∗t−1 + εgdp∗t

If we define g∗t ≡ 4gdp∗t , where 4 is the first difference operator, then,

g∗t = g∗t−1 + εgdp∗t (13)

An advantage of modeling g∗ as a second-order Markov process compared to an RW with

time-varying drift is that it requires estimating a single shock parameter (σ2
gdp∗), as opposed to

two for the latter (one for the shock to gdp∗ and the other for the shock to the time-varying drift,

aka g∗). This modeling assumption implies that all permanent shocks to output are attributed

as shocks to g∗.18

The cyclical component, ogap, is assumed to be a stationary AR(2) process augmented with

additional explanatory variables: the real interest rate gap and the unemployment gap,

ogapt = ρg1(ogapt−1) + ρg2(ogapt−2) + ar(rLt − r∗t ) + λg(Ut − U∗t ) + εogapt (14)

where, εogapt ∼ N(0, σ2
ogap), ρ

g
1 + ρg2 < 1, ρg2 − ρ

g
1 < 1, and |ρg2| < 1

Equation (14) could be interpreted as defining an IS-curve (as in LW and subsequent papers

modeling r-star) that allows feedback from the real interest rate gap to the output gap (i.e., the

real interest rate gap responds to economic slack). The IS equation is inspired by LW but with

two modifications. First, instead of using the interest-rate gap based on the short-term real

rate of interest, we use the long-term real interest rate (as in González-Astudillo and Laforte,

2020). Specifically, the long-term real interest rate, rL, is constructed as the difference between

the nominal yield on a 10-year Treasury bond and the 10-year inflation expectations (i.e., the

PTR series for PCE inflation).19

18Note: the second-order Markov process for gdp* could be thought of as a limiting case of the process.
Assuming gdp* is an RW with time-varying drift term, where the variance of the shock to a gdp* goes to zero,
and the shock to the time-varying drift term (g-star) is the only relevant driver governing the evolution of gdp*
and g-star (see Grant and Chan, 2017b).

19We assume a termpremium∗ = 0 for the sake of simplicity. In a future revision of the paper, we will model
termpremium∗ as the average of the differential between the long-term interest rate (i.e., 10-year Treasury bond)
and the federal funds rate, similar to (Johannsen and Mertens, 2021). We also experimented with an alternative
specification, in which the interest rate gap is constructed as the difference between the short-term federal funds
rate and the first lag of four-quarter trailing PCE inflation, similar in spirit to LW. Based on model fit (log
marginal likelihood), this specification was slightly inferior compared to the Base specification. It is worth noting
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In theoretical models, the long-term interest rate influences household consumption decisions

and business investment decisions. Second, to improve the econometric estimation of the output

gap, we enrich the IS equation by bringing in information from the unemployment gap (from

the unemployment block) as an explanatory variable.20 This latter addition is motivated by the

approach taken in a long list of papers (e.g.,Morley and Wong, 2020; Grant and Chan, 2017a;

Fleischman and Roberts, 2011; Sinclair, 2009; Clark, 1987) that demonstrate the usefulness

of the unemployment rate in improving the econometric estimation of the output gap. As

mentioned earlier, in the equation for the unemployment gap, we add the output gap to improve

the former’s estimation. The coefficient λg captures the contemporaneous relationship between

the output gap and the unemployment gap. The parameter ar relates the output gap to the

real interest rate gap.

We note that innovations ε2
gdp∗ and ε2

ogap are uncorrelated. In an important contribution,

Morley, Nelson, and Zivot (2003), who assume a deterministic g-star, show that this assumption

matters for estimating potential output. However, Grant and Chan (2017a) show that in their

specification, once a stochastic g-star is allowed for, the correlation between ε2
gdp∗ and ε2

ogap

goes to zero. They also show that the model without correlation performs comparably to the

model with correlated innovations based on Bayesian model comparison. Accordingly, to keep

estimation tractable, we assume uncorrelated innovations.

The equation linking survey projections of the potential growth rate, Zg to g∗ 21

Zgt = Cgt + βg ∗ 4 ∗ g∗t + εzgt , ε
zg
t ∼ N(0, σ2

zg) (15)

Cgt = Cgt−1 + εcgt , ε
cg
t ∼ N(0, σ2

cg) (16)

2.5. Productivity block

Since the publication of Adam Smith’s influential book, The Wealth of Nations, it is widely

acknowledged that long-run productivity growth is the primary determinant of long-run changes

in living standards. Therefore, estimates of the long-run level of (labor) productivity growth

that had the longer history of long-term inflation expectations data been available at the time of the writing,
LW would have constructed the interest rate gap using the long-term interest rate (see page 1064 in LW).

20Model fit, the precision metric for u-star and the output gap, and the plausibility of the estimates of output
gap strongly support the joint modeling of the output gap and the unemployment gap. We note that LW
estimated an alternative specification in which they added information from the labor market (hours worked)
and found that doing so improved the precision of the estimated output gap; however, that improved precision
did not spill over to the r-star estimate (the focus of their paper) and therefore in their baseline specification
they omit the labor market variable.

21We could potentially bring in additional information from the CBO’s projection of the level of potential
GDP to improve the econometric estimation of the level of potential real GDP. However, as shown in the results
section, the implied estimates of the output gap from our multivariate framework (with or without survey data)
are remarkably similar to the CBO’s estimates suggesting, the limited value of bringing in additional information
from CBO projections.
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(p-star) have received considerable discussion in the past decades and are of great interest.

Labor productivity is defined here as output per hour worked.

Furthermore, the estimates of p-star are an important input into policymaking, as they

are used to gauge the appropriateness of the monetary policy stance. P-star is important for

monetary policy because standard macroeconomic models tightly connect p-star to the long-run

level of the real interest rate (i.e., r-star). In these models, a lower level of p-star implies a lower

level of r-star, and a higher level of p-star implies a higher r-star (see Lunsford, 2017). However,

based on post-1960 data, Lunsford found no statistical evidence supporting the link between

p-star and r-star.

Several papers have endeavored to estimate the long-run level of productivity growth using

various statistical and econometric models. A subset of those papers have documented support

in favor of a regime-switching framework to model long-run labor productivity growth (e.g.,

Kahn and Rich, 2007). Also, to extract more precise and timely estimates of p-star, various

authors (e.g., Kahn and Rich, 2007; Roberts, 2001) have proposed using additional variables

alongside labor productivity (e.g., real compensation, real consumption, and average hours

worked). On the other hand, Edge, Laubach, and Williams (2007) show that estimates of long-

run productivity growth obtained from a simple trend-cycle univariate model solved with the

Kalman filter do an adequate job of mirroring the long-run projections of productivity growth

reported in the SPF and institutional forecasts (e.g., CBO).22

On closer inspection, the ability of the Kalman filter to echo the predictions of the profes-

sional forecasters is not surprising. Productivity growth is a notoriously volatile series and is

subject to extreme revisions from one vintage to another. So, distinguishing highly persistent

fluctuations from truly permanent changes is a difficult job for professionals and models alike.

Jacobs and van Norden (2016) discuss in detail some of these challenges when working with

productivity data.

The findings in Lunsford (2017), Edge, Laubach, and Williams (2007), and Jacobs and

van Norden (2016) motivate the formulation of a parsimonious structure for the productivity

block relative to other blocks of the model. In particular, we abstract from explicit modeling

of direct links between p-star and r-star and between p-star and g-star.23 But along other

dimensions, our formulation is richer than that used in the cited literature, as we allow for time-

varying parameters, including stochastic volatility. Specifically, the productivity gap, which is

defined as (nonfarm) labor productivity growth24 (quarterly annualized) less p-star, is modeled

22It is worth emphasizing that, in contrast to the regime-switching model (as used in Kahn and Rich, 2007),
which allows for deterministic values of p-star, a random walk assumption for p-star (as in Edge, Laubach, and
Williams, 2007) allows for the possibility that p-star may be changing (slowly) in every period.

23We implemented a model specification that allowed for a direct link between p-star and g-star. Doing
so notably reduces the model fit to GDP, the unemployment rate, and the interest rate data. And it lowers
the precision of the stars’ estimates and the other model parameter estimates. The complete set of results
corresponding to the model specification allowing for a link between p-star and g-star are available from the
author.

24As discussed in Kahn and Rich (2007), the focus outside of the farm sector is primarily on avoiding short-term
transitory volatility in the farm sector that is heavily driven by weather and other nontechnological factors.
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as a function of a one-quarter lag in the productivity gap and the contemporaneous cyclical

unemployment gap.

Pt − P ∗t = ρp(Pt−1 − P ∗t−1) + λpt (Ut − U∗t ) + εpt , ε
p
t ∼ N(0, eh

p
t ) (17)

where, |ρp| < 1

The inclusion of the cyclical unemployment gap helps tease out movements in productivity

associated with the business cycle. The growth in labor productivity (and more generally

aggregate productivity) has been shown to be procyclical to some degree (e.g., Roberts, 2001;

it typically increases sharply at the onset of recoveries and falls during recessions. However,

empirical evidence on the strength and the direction of the cyclical relationship is mixed. This

mixed evidence stems from the use of different estimation samples and or cyclical indicators

(employment-based or output-based). For instance, Gaĺı and van Rens (2021), using split sample

estimation, illustrate empirically the significant weakening in the correlation between labor

productivity and employment, especially post-1984. They find that the relationship has become

countercyclical in the past three decades when using employment as the cyclical indicator.25

But it is slightly procyclical when using output as the cyclical indicator. This latter finding

motivates our alternative specification that replaces cyclical unemployment with the output

gap.

Pt − P ∗t = ρp(Pt−1 − P ∗t−1) + φpt (ogapt) + εpt , ε
p
t ∼ N(0, eh

p
t ) (17b)

Gaĺı and van Rens (2021) find weakening in the correlation between labor productivity and

the cyclical indicator, which motivates time variation in the coefficients λp and φp.26

λpt = λpt−1 + ελpt , ε
λp
t ∼ N(0, σ2

λp) (18)

φpt = φpt−1 + εφpt , ε
φp
t ∼ N(0, σ2

φp) (18b)

The variance of the error term εpt is allowed to change over time.27 Allowing for the time

variation in the cyclical relationship and the error term allows the model to better discriminate

the cyclical movements and idiosyncratic movements in productivity from those associated with

shifts in p-star.

25Gaĺı and van Rens (2021) using a structural macro model attribute the weakening procyclicality of labor
productivity in part to the increased flexibility of the US labor market post-1984, which has enabled firms to
make adjustments at the extensive margin quickly and easily in response to shocks.

26Fernald and Wang (2016) document weakening in the cyclicality of productivity at the industry level,
suggesting that the results of Gaĺı and van Rens (2021) are not due to changes in industry composition.

27Carriero, Clark, and Marcellino (2019) and Tallman and Zaman (2020) document the superior forecast
accuracy of variables including labor productivity from Bayesian VARs with SV compared to VARs without SV,
suggesting the usefulness of allowing for SV. We also find empirical support for the inclusion of SV.
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The SV process is defined as a driftless random walk in the log-variance.

hpt = hpt−1 + εhpt , ε
hp
t ∼ N(0, σ2

hp) (19)

P-star is modeled as a driftless random walk component, and the variance of the shocks to

this component is assumed to be constant. Modeling p-star this way allows it to capture both

unobserved and observed factors that are thought to be persistent but hard to measure. In

particular, one factor is developments in fiscal policy; for example, high levels of government

debt in the longer term tend to crowd out private investment, thereby reducing longer-term

productivity growth.

P ∗t = P ∗t−1 + εp∗t , ε
p∗
t ∼ N(0, σ2

p∗) (20)

Economic theory posits that the long-run nominal wage inflation equals the sum of long-run

productivity growth and long-run price inflation. As discussed later in the wage inflation block,

this theoretical restriction defines the law of motion for w-star and constitutes an additional

channel influencing the dynamics of p-star.

2.6. Price inflation block

We use price inflation as measured by the personal consumption expenditures (PCE) price

index, the inflation measure that the Federal Reserve targets. Our formulation for the price

inflation block closely follows CKP and CCK, combining elements from both of these papers.

Specifically, as in CKP, the stationary component, the inflation gap (defined as the deviation

of inflation from pi-star),28 is modeled as a function of the one-quarter lagged inflation gap,

unemployment gap, and an error term, whose variance is allowed to vary over time.

The coefficient, ρπ on the lagged inflation gap, which captures persistence in inflation dy-

namics (i.e., persistence in the deviation of inflation from pi-star), is allowed to vary over time.29

πt − π∗t = ρπt (πt−1 − π∗t−1) + λπt (Ut − U∗t ) + επt , ε
π
t ∼ N(0, eh

π
t ) (21)

ρπt = ρπt−1 + ερπt , ε
ρπ
t ∼ TN(0− ρπt−1, 1− ρπt−1; 0, σ2

ρπ) (22)

The innovations to the AR(1) coefficient, ρπ are truncated so that 0 < ρπt < 1, ensuring

that the inflation gap (in equation 21) is stationary at each point in time t.

28Modeling inflation in gap form, where the gap is defined as the difference between inflation and a slowly
moving trend, was popularized by Cogley and Sbordone (2008) (and Cogley, Primiceri, and Sargent, 2010),
and since then has been a widely used approach to modeling inflation in macroeconomic models for policy and
forecasting (e.g., Faust and Wright, 2013).

29Chan, Koop, and Potter (2013), CKP, and CCK have found strong empirical support for the time-variation
in the coefficient of inflation gap. Our results reinforce the empirical importance of allowing for time-variation
in this coefficient.
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λπt = λπt−1 + ελπt , ελπt ∼ TN(−1− λπt−1, 0− λπt−1; 0, σ2
λπ) (23)

λπ is the slope of the price Phillips curve and is constrained in the interval (-1,0).

The parameter λ estimates the price Phillips curve relationship (i.e., the relationship between

the inflation gap and the unemployment gap at business cycle frequency). There is ample

empirical evidence in support of a time-varying price Phillips curve (e.g., Stella and Stock (2015);

CKP; Del Negro, Lenza, Primiceri, and Tambalotti (2020))), hence our choice of allowing for

time-variation in the parameter λπ.30

hπt = hπt−1 + εhπt , εhπt ∼ N(0, σ2
hπ) (24)

The SV process is defined as a random walk in the log-variance.

Both the theoretical and empirical literature emphasize the usefulness of the signal from

fluctuations in labor costs for inflation dynamics. Post-Keynesian theory posits that excess wage

inflation over labor productivity gains puts upward pressure on price inflation, i.e., causality

runs from labor costs to price inflation. In comparison, the neo-classical theory suggests that

causality runs in the opposite direction, from price inflation to nominal wage inflation. The

empirical evidence in the US data is inconclusive in that there is no clear evidence on the

direction of causality. If anything, the evidence suggests they co-move together (see Knotek II

and Zaman, 2014, and references therein).

Given the empirical evidence of co-movement, we explore an alternative specification in

which we allow for a connection between two cyclical inflation components, the nominal wage

inflation gap and the price inflation gap, by adding the nominal wage inflation gap as an

explanatory variable in the equation describing the price inflation gap. The parameter γπ

captures the strength of the relationship between the two cyclical inflation measures. The

expression γπ

1−ρπ can be interpreted as the pass-through from cyclical wage inflation to cyclical

price inflation.31

πt − π∗t = ρπt (πt−1 − π∗t−1) + λπt (Ut − U∗t ) + γπ(Wt −W ∗t ) + επt , ε
π
t ∼ N(0, eh

π
t ) (21b)

Similarly, as shown later, we add the price inflation gap to the equation describing the nom-

inal wage inflation gap.

30See Del Negro et al. (2020) for a comprehensive literature review of the instability of the Phillips curve in
the US data, and similarly Banbura and Bobeica (2020) for the euro area data. We note that the literature
documenting empirical evidence in support of a nonlinear Phillips curve (e.g., Ashley and Verbrugge, 2020)
supports time variation in the parameter λπ.

31We explored the possibility of allowing for time variation in γπ but the estimation ran into difficulties; hence,
we resorted to time-invariant γπ.
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Pi-star is modeled as a driftless random walk component, and the variance of the shocks to

this component is assumed to be constant (as in CKP). This latter assumption of homoscedastic

errors is in contrast to Stock and Watson (2007), Mertens (2016), and several others. Our choice

not to incorporate SV into shocks to pi-star is made to keep the estimation manageable and

maintain consistency with our modeling assumptions for the stars.32

π∗t = π∗t−1 + επ∗t , ε
π∗
t ∼ N(0, σ2

π∗) (25)

Following CCK (and others, such as Mertens and Nason (2020)), to improve pi-star’s econo-

metric estimation, we bring in information from the long-run survey expectations (of PCE

inflation). An important empirical finding of CCK is that long-run survey expectations of in-

flation are a biased measure of the underlying trend inflation, at sometimes. Hence, simply

equating pi-star with the long-run survey expectations or assuming that survey expectations

are an unbiased measure of pi-star or calibrating econometric estimates of pi-star to surveys (as

is commonly done) may not be a reasonable strategy.

Accordingly, we add an equation linking long-run survey expectations of inflation, Zπ, to

pi-star, where the intercept, Cπt , is time-varying to capture a possibly time-varying differential

between the two.33

Zπt = Cπt + βππ∗t + εzπt , ε
zπ
t ∼ N(0, σ2

zπ) (26)

Cπt = Cπt−1 + εcπt , ε
cπ
t ∼ N(0, σ2

cπ) (27)

Our model specification modifies the baseline model of CCK in five important ways. First, we

allow a time-varying Phillips curve relationship by adding the cyclical unemployment component

(similar to CKP).34 Second, we explore a model specification that allows for a link between the

nominal wage inflation gap and the price inflation gap (capturing the evolving pass-through

from labor costs to price inflation). Third, we adopt a more simplistic approach to modeling

the link between survey expectations and pi-star. Fourth, the variance of the shocks to the pi-

star process does not entertain SV. Fifth, pi-star is restricted to satisfy the long-run restriction

informed by theory (see equation 28).

32Allowing SV in the inflation gap component and not in the trend component is not without precedent. Be-
sides CKP, Chan (2013) is a recent paper modeling SV only in the measurement equation (i.e., cyclical/transitory
component). Berger, Everaert, and Vierke (2016) find support for SV in the inflation gap component but weak
evidence for SV in the trend component. Our preliminary results indicate similar findings: that adding SV to
the pi-star equation neither helps nor hurts the model fit.

33Our formulation is flexible but less so than the one adopted by CCK. In addition to time variation in the
intercept, CCK add time-variation in the slope coefficient, and moving average (MA) in the error term. For PCE
inflation, CCK did not find the addition of the MA in the error term useful. We think our relatively simplistic
equation suffices in its aim of influencing econometric estimation of pi-star through survey expectations.

34CCK explored an alternative specification in which they add cyclical unemployment but as an exogenous
variable (constructed using the CBO estimate of the natural rate). CCK found that adding cyclical unemployment
slightly worsened the fit of their model.
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2.7. Wage inflation block

The long-run equilibrium level of nominal wage inflation (w-star) is the nominal wage growth

rate consistent with its fundamentals – p-star and pi-star. As noted earlier, in the long run,

economic theory posits that the nominal wage inflation equals the sum of the long-run growth

rate of labor productivity and the long-run level of price inflation. In other words, in the

long run, labor productivity growth is the only fundamental driver of real wages; therefore,

price inflation and nominal wage inflation have to adjust relative to each other to maintain the

fundamental relationship. In our setup, we impose this relationship to define w-star.

W ∗t = π∗t + P ∗t + εw∗t , εw∗t ∼ N(0, σ2
w∗) (28)

The above equation implies that W ∗ is approximately equal to sum of π∗t + P ∗t .

In order to assess empirical support for the theoretical restriction defined by equation (28),

we explore an alternative specification that models W ∗ as an RW process,

W ∗t = W ∗t−1 + εw∗t , εw∗t ∼ N(0, σ2
w∗) (28b)

Equation (29) relates the nominal wage inflation gap – defined as the difference between the

nominal wage inflation and w-star – to its one-quarter lagged gap, the cyclical unemployment

gap, and the price inflation gap.35 The variance of the error term, εwt , is allowed to vary over

time. The latter feature is motivated by findings in Tallman and Zaman (2020) and Peneva and

Rudd (2017), who document a better fit of the VAR with SV to nominal wage data compared

to the VAR without SV.

Wt −W ∗t = ρwt (Wt−1 −W ∗t−1) + λwt (Ut − U∗t ) + κwt (πt − π∗t ) + εwt , ε
w
t ∼ N(0, eh

w
t ) (29)

The SV process is defined as a random walk in the log-variance.

hwt = hwt−1 + εhwt , εhwt ∼ N(0, σ2
hw) (30)

The findings in Knotek II and Zaman (2014) motivate the inclusion of a one-quarter lagged

nominal wage inflation gap, with time variation in the parameter ρw; the latter quantifies the

persistence in wage inflation dynamics.

35Following the literature on modeling price inflation in the gap, Knotek II and Zaman (2014) apply a similar
transformation to modeling nominal wage inflation for the US. In particular, they construct the nominal wage
inflation gap as nominal wage inflation less pi-star, where pi-star is survey expectations. They note that the
competitive forecasting properties of their model is due to modeling in gaps. Following Knotek II and Zaman
(2014), Bobeica, Ciccarelli, and Vansteenkiste (2019) construct a nominal wage inflation gap for the euro area
data and find empirical support for the gap specification.
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ρwt = ρwt−1 + ερwt , ερwt ∼ TN(0− ρwt−1, 1− ρwt−1; 0, σ2
ρw) (31)

The innovations to the AR(1) coefficient, ρw, are truncated so that 0 < ρwt < 1, to ensure

that the wage gap (in equation 29) is stationary at each point in time t.

The parameter λw in equation (29) measures the strength of the cyclical relationship between

the nominal wage gap and labor market slack (aka the wage Phillips curve). Many studies, both

theoretical (e.g., Gaĺı, 2011) and empirical (e.g., Knotek II and Zaman, 2014; Peneva and Rudd,

2017; Gaĺı and Gambetti, 2019), have documented strong support for the existence of a wage

Phillips curve in the US data. These studies have also demonstrated the instability of the wage

Phillips curve, motivating the need for time-variation in the parameter λw.36

λwt = λwt−1 + ελwt , ελwt ∼ TN(−1− λwt−1, 0− λwt−1; 0, σ2
λw) (32)

where λw is the slope of the wage Phillips curve and is constrained in the interval (-1,0).

As discussed earlier in the price inflation block, both theory and empirical evidence point

to the connection between price inflation and nominal wage inflation. The standard fully struc-

tural models describing the New Keynesian Phillips curve posit a tight relationship between

price and wage inflation via the channel of current and expected future marginal costs. In

these models, price inflation today is a function of expected price inflation and expected fu-

ture marginal costs, where marginal costs are generally linked to wages. Knotek II and Zaman

(2014) provide empirical evidence of the connection between nominal wage and price inflation.

In particular, they show no clear evidence of one Granger-causing the other; instead, both wage

and price inflation generally tend to move together. This reasoning would suggest the impor-

tance of modeling the direct relationship between wage inflation and price inflation. Hence, this

motivates the inclusion of the price inflation gap in the measurement equation (29).

Several studies document a significant weakening in the empirical link between price infla-

tion and nominal wage inflation since the 1980s (e.g., Peneva and Rudd, 2017; Knotek II and

Zaman, 2014), motivating time variation in the parameter κw.37 The expression
κwt

1−ρwt
could be

interpreted as an estimate of the pass-through from price inflation to wage inflation.

κwt = κwt−1 + εκwt , εκwt ∼ N(0, σ2
κw) (33)

To assess empirical support for the inclusion of the price inflation gap in the equation

describing the nominal wage gap, we estimate an alternative model that replaces equation (29)

36Literature has posited various explanations for the instability of the wage Phillips curve, including downward
nominal wage rigidities, where the degree of rigidity varies with the phase of the business cycle (see Daly and
Hobijn, 2014).

37Bobeica, Ciccarelli, and Vansteenkiste (2019) find that in the euro area the link between labor compensation
and price inflation continues to remain strong post-1980.
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with the following:

Wt −W ∗t = ρwt (Wt−1 −W ∗t−1) + λwt (Ut − U∗t ) + εwt , ε
w
t ∼ N(0, eh

w
t ) (29b)

2.8. Interest rate block

We close the model with the interest rate block characterizing the interest rate dynamics

and the law of motion for r-star (the long-run equilibrium real short-term interest rate).

Our first equation of the block brings information from the nominal short-term interest rate

via a Taylor-type rule (TR) to aid in identifying r-star. Past research has shown the TR’s

usefulness in characterizing the monetary policy reaction function over the past four decades.

Specifically, this equation characterizes the dynamics of the short-term nominal interest rate

gap, where the gap is the difference between the nominal short-term interest rate i, and the

long-run level of the nominal neutral rate of interest, i-star. (i-star = pi-star + r-star). When

modeling the nominal short-term interest rate, especially in a framework like ours, one must

account for the effective lower bound (ELB) period.

The recent literature provides at least two options for handling the ELB. The first is to

explicitly but separately model the observed short-term nominal rate, which cannot go below

zero, and the “shadow interest rate,” which is a hypothetical unobserved and unbounded coun-

terpart. Wu and Xia (2016) popularized the concept of the shadow interest rate, and JM and

González-Astudillo and Laforte (2020) are two recent approaches well suited for inclusion in

UC models. The second approach is to treat the estimate of the “shadow rate” obtained from

Wu and Xia (2016) as the measure of the short-term nominal interest rate in measurement

equations such as the TR (e.g., Pescatori and Turunen, 2016).38

Given our model’s size and complexity, we adopt the latter approach, which is simpler

though not perfect. Using a direct measure of the nominal shadow rate allows us to capture

both conventional and unconventional monetary policy effects when the (observed) nominal

federal funds rate is constrained at the ELB.39

Equation (34) relates the nominal interest rate gap (based on the shadow federal funds rate)

to its one-period lag interest rate gap, the current quarter inflation gap (i.e., the deviation of

inflation from pi-star), and the unemployment rate gap (i.e., the deviation of the unemployment

rate from u-star). This equation roughly characterizes the monetary policy reaction function

as defined by Taylor (2001).40 There is a broad consensus that policy adjustments outside of

38The estimates from Wu and Xia (2016) are publicly available and regularly updated. Treating the shadow
rate as the measure of the short-term nominal rate in place of the federal funds rate is commonly done, and often
academic papers report results indicating robustness to the use of Wu and Xia’s shadow rate (e.g., Beyer and
Wieland, 2019; Lewis and Vazquez-Grande, 2019)

39The nominal shadow federal funds rate is identical to the nominal federal funds rate when the effective lower
bound is not binding.

40It is worth emphasizing that we denote this equation as a “Taylor-type rule” and not an exact Taylor-rule
because in our equation, pi-star refers to the estimate of trend inflation, which may or may not be equal to
central bank’s long-run inflation goal.
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cyclical turning points are made very gradually. Hence, this motivates the inclusion of the

lagged interest rate gap term.

Chan and Eisenstat (2018b,a) and JM document strong empirical support for constant

parameters in the Taylor rule equation while allowing for stochastic volatility in the errors.

Accordingly, we allow for SV in the interest rate equation. JM, González-Astudillo and Laforte

(2020), and Brand and Mazelis (2019) document the usefulness of adding the TR equation

to identify r-star. The latter two do not entertain SV, which JM has found to be empirically

important. As discussed later, we also found that adding the TR equation improves the precision

of the r-star estimates significantly, and the data strongly favor allowing for SV in the error

process.

it − π∗t − r∗t = ρi(it−1 − π∗t−1 − r∗t−1) + λi(Ut − U∗t ) + κi(πt − π∗t ) + εit, ε
i
t ∼ N(0, eh

i
t) (34)

where ρi is truncated so that 0 < ρi < 1.

hit = hit−1 + εhit , ε
hi
t ∼ N(0, σ2

hi) (35)

The SV process is defined as a random walk in the log-variance.

Our second equation motivated by LW heeds the economic theory suggesting the role of

various real factors in influencing movements in r-star. These factors include long-run output

growth (and long-run productivity growth), trend labor force growth (reflecting shifts in de-

mographics and net migration), taxation structure, government expenditure shifts, and shifts

in liquidity preferences (e.g., Del Negro et al., 2017; Bullard, 2018. Accordingly, equation (36)

expresses r-star as a linear function of g-star and a “catch-all” component D. In our baseline

specification, both g-star and D follow random walk processes similar to LW (and many other

papers). The RW assumption for D is an appropriate one, given that our focus is the long-run

r-star that should, in principle, be influenced over time by permanent shifts in aggregate supply

and demand (Laubach and Williams, 2016).41

r∗t = ζg∗t +Dt. (36)

Dt = Dt−1 + εdt , ε
d
t ∼ N(0, σ2

d) (37)

In the more recent literature on long-run r-star, modeling r-star as a random walk process

has performed better empirically than model specifications relying on the link between g-star

41Researchers have also explored an AR process for component D, which would be consistent if the interest is
in medium-term r-star (see Lewis and Vazquez-Grande, 2019), as this would allow r-star to be influenced by the
transitory shocks to aggregate demand (via the AR process) and permanent shocks to aggregate supply (via the
RW process for g-star). In studies focused on the long-run notion of r-star, such as LW, Laubach and Williams
(2016), Clark and Kozicki (2005), and Kiley (2020), specification based on the RW assumption has been shown
to be empirically favored by the data compared to AR assumption.
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and r-star.42 Accordingly, we explore an additional specification that models r-star simply as

the RW process (similar to g-star, p-star, pi-star, u-star). The RW assumption for r-star implies

that we are agnostic about the underlying unobserved forces driving r-star but we acknowledge

that those forces reflect persistent structural shifts in aggregate demand and supply that ought

to have a bearing on r-star.

r∗t = r∗t−1 + εr∗t , ε
r∗
t ∼ N(0, σ2

r∗) (36b)

Lastly, the equations linking the implied estimate of the long-run survey expectations of the

real short-term interest rate, Zr, to r∗ are defined as:43

Zrt = Crt + βrr∗t + εzrt , ε
zr
t ∼ N(0, σ2

zr) (38)

Crt = Crt−1 + εcrt , ε
cr
t ∼ N(0, σ2

cr) (39)

All in all, information from six sources and/or elements informs the econometric identifica-

tion of r-star. These sources include: an IS equation (14)); a TR equation (34), which allows for

SV; an equation linking r-star to survey expectations; the shadow rate; and an equation relating

r-star to g-star. As we show shortly, all of these sources play a role in improving r-star’s pre-

cision. To reiterate, in our framework, we use information from both short-term interest rates

(via a TR equation) and long-term interest rates (via an IS equation) to inform the estimation

of r-star.44

2.9. Base model and its variants

The equations (6), (7). . . (39) define our baseline model formulation (denoted Base). Figure

1 provides a visual representation of our Base model. And section A1.a. of the online appendix

lists all of the equations for the Base model for easy reference. To assess the usefulness of survey

information in the econometric estimation of our multivariate UC model, we also estimate a

variant of the baseline model that excludes the equations linking long-run survey expectations

to stars (i.e., excluding equations 9, 10, 15, 16, 26, 27, 38, and 39). We denote the latter

specification as Base-NoSurv. The model specifications Base and Base-NoSurv constitute our

two main model specifications. To assess the empirical support for numerous additional features

(informed by theory and past empirical research) embedded in our modeling framework, we

42See Kiley, 2020; González-Astudillo and Laforte, 2020; Orphanides and Williams, 2003; JM.
43The r-star survey estimates are not direct estimates; instead, they are inferred from the Blue Chip survey’s

long-run estimates of the GDP deflator and short-term interest rates using the long-run Fisher equation. The
survey expectations for r-star goes back to 1983.Q1. Please refer to the online appendix A9 for details on the
procedure to back-cast estimates all the way back to 1959.

44Del Negro et al. (2017), JM, Bauer and Rudebusch (2020), and González-Astudillo and Laforte (2020) are
recent studies that have highlighted the usefulness of exploiting information from both short-term and long-term
interest rates in the identification of r-star.
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formulate several additional model specifications, each of which is a restricted variant of the

Base. For instance, to assess the empirical support of the theoretical restriction defined by

equation 28 (which defines w-star as the sum of pi-star and p-star), we estimate a variant of the

baseline model that replaces equation 28 with a random walk assumption for w-star as defined

by equation 28b. We denote this specification as Base-W*RW.

Similarly, to assess the empirical support for the theoretical restriction defined by equation

36 (the link between g-star and r-star), we estimate a model specification that replaces equation

36 with a random walk assumption for r-star as defined by the equation 36b. Table 1 reports the

description of model specifications that are formulated to assess various features of importance.

We ran a few additional specifications to explore the role of priors in influencing r-star, and for

brevity purposes they are relegated to the online appendix. To keep the length of the paper

manageable, we report selected results from the auxiliary model specifications in the main part

of the paper with additional results included in the online appendix.

3. Data and Bayesian Estimation

3.1. Data

We estimate the empirical model using the following quarterly data: (1) the unemployment

rate; (2) real GDP growth; (3) nonfarm labor productivity growth; (4) the inflation rate in

personal consumption expenditures (PCE) price index; (5) average hourly earnings (AHE)

of production and nonsupervisory workers (total private industries);45 (6) the federal funds

rate; (7) nominal yield on the 10-year Treasury bond; (8) shadow federal funds rate from

Wu and Xia (2016); (9) Blue Chip46 (real-time) long-run projections of three-month Treasury

bill, real output growth, the unemployment rate, and GDP deflator inflation; (10) long-run

inflation expectations of PCE inflation (PTR series). We also collect the real-time long-run

CBO projections of real output growth, the level of real potential output, and the natural rate

of unemployment. For forecast evaluation exercises, the real-time data vintages of real GDP

growth, PCE inflation, the unemployment rate, AHE, and nonfarm labor productivity spanning

1998Q1 through 2019Q4 are downloaded from the ALFRED database maintained by the St.

Louis Fed and the real-time database maintained by the Federal Reserve Bank of Philadelphia.

For the data series labeled (1) through (7), which comprises our core data set, we collect two

vintages of revised data: 2020Q2 and 2020Q4 vintages, respectively. We use data starting in

1959Q4 through 2019Q4 from the 2020Q2 vintage (which includes the third estimate of 2019Q4)

as a featured sample for this paper. To show the implications of the COVID-19 data for our

model estimates, we estimate our model(s) using the 2020Q4 vintage, which has data spanning

1959Q4 through 2020Q3. The vintages corresponding to the revised data are downloaded from

45Average hourly earnings (AHE) of production and nonsupervisory workers in total private industries goes
back to 1964Q1. From 1959Q4 through 1963Q4, we use the AHE of production and nonsupervisory workers in
goods-producing industries. We splice them together.

46Blue Chip Economic Indicators data published by Wolters Kluwer Legal and Regulatory Solutions U.S.
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Haver Analytics.

3.2. Bayesian estimation

We use Bayesian estimation methods to fit our Base model and its variants. The use of in-

equality restrictions on latent parameters in our model(s) setup leads to a nonlinear state-space

model, which renders estimation using standard Kalman filter methods infeasible. Accordingly,

we implement our Markov chain Monte Carlo (MCMC) posterior sampler based on computa-

tional methods developed in Chan, Koop, and Potter (2013) and CKP, who use the band and

sparse matrix algorithms detailed in Chan and Jeliazkov (2009). Specifically, the MCMC pos-

terior sampler is a significantly scaled-up version of the sampler employed by CKP. The CKP

posterior sample developed for a relatively smaller-scale nonlinear state-space model is carefully

extended to accommodate the additional structure and numerous features of our model(s). Since

the computational methods used in this paper are based on CKP, we relegate the specific details

of the sampler to the online appendix A1.

In a methodological sense, this paper’s novelty is in assembling the existing sampling al-

gorithms based on the fast band and sparse matrix routines to solve a large nonlinear and a

high-dimensional UC model. We found that the use of inequality restrictions, such as bounds on

the u-star and other parameters, is crucial to estimate the model, especially in the Base-NoSurv

model. Intuitively, features such as truncated distributions that we implement for some of the

time-varying parameters, e.g., the Phillips curve (price and wage), persistence, and bounds on

u-star facilitate estimation by guiding the estimation procedure to the credible regions of the

parameter space.

For each model, we simulate 1 million posterior draws from the MCMC posterior sampler.

We then discard the first 500,000 draws, and of the remaining, we keep every 100th draw.

Accordingly, all of the reported results for the Base model and its variants are based on 5000

retained draws.

As emphasized by Chan (2017), the MCMC algorithm is considered efficient if the draws it

produces have low autocorrelation – they are autocorrelated by construction – and the time it

takes to sample a given number of posterior draws is reasonable. In the appendix, we report the

efficiency diagnostics of our MCMC algorithm. Those diagnostics, which include inefficiency

factors and convergence metrics, indicate good convergence properties (and low autocorrelation)

of our sampler for both Base and Base-NoSurv models.47

Bayesian model comparison is based on the marginal likelihood metric. In computing

marginal likelihood for various models, we use the approach proposed by CCK, which decom-

poses the marginal density of the data (e.g., inflation) into the product of predictive likelihoods;

47Regarding computational time, given the high dimensionality of our model(s) and the number of posterior
simulations we require, the speed is quite fast (in our assessment). When applied to the Base model, the MCMC
algorithm, which is implemented in Matlab, takes about 350 seconds to generate 10,000 posterior draws using a
laptop computer with an Intel(R) Xeon(R) E-2176M CPU @ 2.70 GHz processor. To generate 1 million posterior
draws, it takes less than 10 hours.
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see appendix A1.d for details.48 An important advantage of the CCK approach is that it allows

us to separately compute marginal data density for each variable of interest: inflation, nominal

wages, interest rate, real GDP, the unemployment rate, and labor productivity. The variable-

specific marginal densities prove useful because it allows for deeper insights into the source of

the deficiencies, which helps differentiate models at a more granular level.

We note that our prior settings are similar to those used in CKP, CCK, and González-

Astudillo and Laforte (2020). As discussed in CCK, UC models with several unobserved vari-

ables, such as the one developed in this paper, require informative priors. That said, our prior

settings for most variables are only slightly informative. The use of inequality restrictions on

some parameters such as the Phillips curve, persistence, and bounds on u-star could be viewed

as additional sources of information that eliminate the need for tight priors, something also

noted by CKP. For the parameters on which there is strong agreement in the empirical lit-

erature on their values, such as the Taylor-rule equation parameters, we use relatively tight

priors, such that prior distributions are centered on prior means with small variance. In model

comparison exercises, the priors are kept the same for the common parameters across models.

We also perform some prior sensitivity analysis reported in appendix A2.

4. Full Sample Estimation Results

This section sequentially discusses results for each of the six blocks, particularly the full-

sample estimates of stars. Here, we briefly highlight some of the noteworthy findings. Compar-

ing estimates of the stars between model specification Base and Base-NoSurv, a clear pattern

emerges. The precision of the estimates, as measured by the width of the 90% credible in-

tervals, indicates that the Base model, which explicitly accounts for the links between stars

and survey data, yields more precise estimates of the stars than Base-NoSurv. Although the

broader contours seen in the estimates of stars from our two main model specifications, Base

and Base-NoSurv, are comparable, at times, the differences can be notable, especially in the

case of r-star. In the case of g-star (and, in turn, the output gap), our two model specifications

yield very similar trajectories as implied by the posterior mean estimates. This result suggests

that the data are very informative about g-star, and not so much about r-star, confirming the

finding of Kiley (2020).

Furthermore, the Bayesian model comparison indicates marginally higher support in the

data for Base over Base-NoSurv, as shown in Table 3. The breakdown of the marginal data

density by variables suggests that the Base model’s improved fit over Base-NoSurv is due to its

improved fit to inflation and nominal interest rate data. But that improved fit is offset mainly

by worsening fit to the unemployment and wage data. The table also reports the marginal

data density for two additional Base model variants for which the Bayesian model comparison

indicates a comparable fit to the data. Overall, we find that bringing in additional information

48Alternatively, one could use the cross-entropy (Kullback-Leibler divergence) approach proposed by Chan
and Eisenstat (2018b,a). We leave this for future extensions.
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from surveys – by directly modeling the connection to the stars – leads to more reasonable

values, provides more precise estimates, and marginally improves the model fit.

4.1. Estimation results for u-star

Figure 2 plots the evolution of u-star (and its uncertainty) covering the period 1960 through

2019. Panel (a) plots the posterior estimates from the Base model and panel (b) from the

Base-NoSurv model. Also plotted are the corresponding 90% credible intervals. Both models

imply a smooth evolution of u-star. In the past six decades, the (posterior mean of) u-star has

fluctuated between 4.4% and 5.7%, peaking in the early 1980s and early 2010s, and troughs in

the late 1990s and at the end of our sample period. The contours of u-star from both models

are generally similar (as can also be seen conveniently in panel d); however, the level of u-star

can differ notably in some periods. From 1960 through the late 1970s, u-star has gradually

increased (from 5.4% to 5.7% in Base and 5.0% to 5.6% in Base-NoSurv). But since the mid

1980s through the late 1990s, u-star has steadily drifted lower (to 4.5%). This downward trend

in the later period is also documented in the u-star literature based on job-flows data, which

attributes the decline in u-star to declining trends in job-separation and job-finding rates (e.g.,

Crump et al., 2019; Tasci, 2012).

From early 2000 through early 2010, u-star has trended higher, with a sharp pickup during

the Great Recession period. Since 2010, u-star has steadily drifted lower. By the end of 2019,

Base has u-star at 4.4% (with a 90% interval covering 3.7% to 5.2%) and Base-NoSurv at 4.5%

(with a 90% interval covering 3.7% to 5.4%). As shown in Figure 3, at the end of 2019, the

unemployment gap implied by both models is negative, i.e., the unemployment rate is below

the estimated u-star.

The use of survey information in the Base model mainly contributes to the difference in

the levels of u-star across the two models. To facilitate comparison, panel (a) also plots u-star

from the survey. As is evident from the plot, u-star from the survey displays more pronounced

shifts in u-star than the model-based estimates. However, due to a strong estimated relationship

between the survey u-star and Base u-star (i.e., posterior mean of βu = 0.988), the Base estimate

of u-star reflects the contours in survey u-star. As can be seen in panel (e), which plots the

precision (measured as the width of the 90% intervals), taking survey information onboard

improves the precision of u-star notably (comparing Base and Base-NoSurv).

Surprisingly, based on the Bayesian model comparison, the Base model has an inferior fit to

the unemployment data compared to Base-NoSurv. As shown later, this result contrasts with

the results for pi-star, r-star, and g-star, for which survey information helps improve the model

fit or at least does not worsen the fit.49

49Wright (2013) and Tallman and Zaman (2020) use long-run survey information in an attempt to improve
VAR model forecasts. In both cases, survey information did not improve the accuracy of unemployment rate
forecasts, although they found survey forecasts useful in improving accuracy for a range of other macroeconomic
variables.
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Sensitivity of u-star to modeling assumptions including information set

Panel (c) plots additional estimates of u-star (posterior mean) from the variants of the

Base model to highlight the sensitivity of u-star to modeling assumptions and the informational

aspect of joint modeling. The plot denoted Base-NoBoundU* represents the Base model variant

that eliminates the bound on the random walk process describing u-star. Doing so has a trivial

effect on the estimates of u-star, the precision of u-star, and model fit. Comparing between

panels (a) and (c), the posterior mean estimate of u-star is quite similar across Base and Base-

NoBoundU*. Similarly, there is little change in the u-star estimate’s precision across the two

models, with Base only marginally better in the latter part of the sample (as shown in panel

e). Not surprisingly, the Bayesian model comparison suggests equal support for both Base and

Base-NoBoundU*.

We highlight two noteworthy comments in regard to the implementation of bounds on u-

star. First, the trivial difference in the estimates between Base and Base-NoBoundU* arises

because the bounds defined on u-star are wide. Put differently, the values of the bound we have

set are not binding on the Base model. Second, we find that using bounds on u-star is extremely

important in the Base-NoSurv, as it helps keep the estimation tractable. In other words, the

advantages of using bounds on the random walk processes that were stressed in CKP were in

full display in the estimation of Base-NoSurv. Hence, we prefer to keep bounds on u-star in our

main models.

At the time of writing this paper, the world was hit with a COVID-19 shock, an extreme and

unprecedented global health shock along various dimensions, leading several analysts to call it

a “once-in-a-lifetime upheaval.” As we will show in Section 6, the implementation of bounds on

u-star is part of the story in preventing our models from blowing up in response to COVID-19

data.

The other model variants plotted in panel (c) are all nested specifications of the Base

model: the Bivariate model of GDP and the unemployment rate (a Base model that excludes

survey information and everything else except the equations describing the dynamics of GDP

and the unemployment rate); Bivariate+Surv, which is bivariate but adds survey data for

GDP and unemployment; and CKP Adjusted, which is a bivariate model of inflation and the

unemployment rate as in CKP but with no bounds on pi-star. For visual reasons (to limit

the number of plots), u-star from Base in panel (c) is not shown. However, for the sake of

discussion, we could treat the plot representing Base-NoBoundU* as the estimate for the Base

model, since they are identical to each other (as discussed in the preceding paragraph).

These plots show that different model specifications could provide very different signals

about the level of long-run unemployment, indicating the sensitivity of u-star to modeling

assumptions. As evident from the figure, the small-scale model specifications indicate u-star

range-bound between 5.3% and 6.5% over the sample. In contrast, the Base specification has

u-star fluctuating over a broader range. A model specification that infers the estimate of u-star

from inflation and unemployment data only, i.e., the price Phillips curve (CKP Adj. model),
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has a higher trajectory of u-star compared to Base. The story is similar in the case of the

model specification that infers the estimate of u-star from GDP and the unemployment data

only, i.e., the Okun’s law relationship (Bivariate model), though the trajectory of u-star is lower

than implied by the CKP-Adj model. Once the Bivariate model is augmented with survey data

for GDP and unemployment, the trajectory is revised higher to resemble CKP-Adj, but with

contours similar to Base (because of the survey data).

Panel (d) compares the u-star estimates from the main model specifications with the CBO

estimate of the long-run unemployment rate. Interestingly, except for the 2000-2007 period, the

CBO u-star’s contour is similar to our model-based estimates, though the level of CBO u-star

estimate is significantly higher from 1960 through the early 2000s. From 2000 to 2007, both

Base and Base-NoSurv indicate a steadily rising u-star, whereas the CBO has u-star trending

lower. At the onset of the Great Recession and through the early phase of the economic re-

covery, all three have u-star continuing to move higher. Whereas Base and Base-NoSurv peak

in late 2010 at 5.5% and 5.2%, respectively, the CBO has u-star peaking in late 2011 at 5.8%.

Since then, u-star has steadily moved lower, with the pace of decline quite similar across CBO

and Base. CBO has u-star at the end of 2019 at 4.4%, identical to Base and just a tenth shy of

Base-NoSurv.

Precision of u-star

Panel (e) plots the precision of u-star estimates for Base, Base-NoSurv, Base-NoBoundU*,

and Bivariate+Surv. We make several observations. First, comparing between Base and Bi-

variate+Surv, both of these model specifications use information from the surveys and the

Okun’s relationship. However, Base relies on greater information and additional structure (e.g.,

wage Phillips curve, price Phillips curve, cyclical productivity, monetary policy stance via the

Taylor-type policy rule) to infer the u-star compared to Bivariate+Surv, hence the more im-

proved precision of the resulting u-star. The latter reasoning contributed to the very different

estimate of u-star from the Base than Bivariate+Surv discussed earlier (and shown in panel

c). And the model comparison indicates a significantly higher fit of the Base model to the

unemployment data compared to the Bivariate+Surv.

Second, comparing with Base and Base-NoSurv, additional information from survey fore-

casts improves the precision of u-star, but this improved precision does not translate into im-

proved model fit, which instead worsens somewhat (as shown in Table 4).

Panel (f) shows the precision of u-star for Base-NoSurv, Bivariate (GDP and unemploy-

ment), and CKP-Adj (which is a bivariate model of price inflation and the unemployment

rate). As indicated earlier, u-star from Base-NoSurv is inferred from a broader information set

and structure than the other two small-scale models. Accordingly, the Base-NoSurv estimate

of u-star is, for the most part, more precise and the model comparison indicates a substantially

higher fit to the unemployment data than the other two. The plots also show that u-star inferred

from the Okun’s law relationship (i.e., Bivariate model) is less precise than u-star inferred from
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the price Phillips curve (i.e., CKP-Adj model). In contrast, the Bayesian model comparison

lends support to the Bivariate model over the CKP-Adj model.

The results also provide evidence that adding survey data to the Bivariate model (Bivari-

ate+Surv) further improves both the precision of u-star (comparing Bivariate and Bivariate-

Surv in panels e and f) and the fit to the unemployment data (Bivariate: -56.5 vs. Bivari-

ate+Surv: -46.5, as shown in Table 4). This latter finding of improved fit from adding survey

data is interesting because in the case of Base, adding survey data worsens the model fit (Base:

-24.6 vs. Base-NoSurv: -21.7). Importantly, it suggests that survey forecasts of u-star are likely

useful in the case of parsimonious models but of limited use for models that are already utilizing

various sources of information to infer u-star.

Cyclical unemployment

Figure 3 presents the posterior mean estimate of the unemployment gap (i.e., the cyclical

component of the unemployment rate) and the corresponding 90% credible intervals. The top

panel plots the estimates from the Base model, and the bottom panel from the Base-NoSurv

model. A visual inspection indicates that the movements in cyclical unemployment correspond

quite well with the NBER’s business cycle dating. For instance, cyclical unemployment falls

in economic expansions and rises during recessions. Both models show a significant spike in

the cyclical unemployment rate in the 1982-83 and 2007-09 recessions, and a sharper recovery

following the 1982-83 recession but a more gradual recovery following the Great Recession. The

figure also highlights that both models produce similar estimates of cyclical unemployment.

Comparing estimates of (smoothly evolving) u-star in the previous figure to estimates of the

cyclical unemployment rate indicates that fluctuations in the observed unemployment rate are

attributed mainly to cyclical unemployment.

4.2. Estimation results for g-star and the output gap

Panels (a) and (b) in Figure 4 plot the g-star estimates from several sources, and panel

(c) plots the corresponding precision. As is evident, g-star estimates from all sources shown

indicate a steady decline throughout the sample, except a temporary rise in the late 1990s,

which the literature has attributed to the technology boom. According to the posterior mean

estimates of g-star from our Base and Base-NoSurv models, the growth rate of potential output

has continuously drifted lower from an annualized rate of close to 4.5% in early 1960 to 1.4% by

the end of 2019. The estimate of g-star fell to 1.2% in 2012 and remained there through 2015 and

then began very slowly to move up. The story is generally similar based on the inference from

simpler (nested) specifications of the Base model: (1) the univariate model (which is Grant

and Chan, 2017b model); (2) the bivariate model of real GDP and the unemployment rate;

and (3) the bivariate model augmented to include survey data for g-star and u-star (denoted

Bivariate+Surv).

This continuous reduction in the growth rate of potential output has been extensively doc-
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umented elsewhere (e.g., Berger, Everaert, and Vierke, 2016; Grant and Chan, 2017b; Coibion,

Gorodnichenko, and Ulate, 2018) and in particular the decline since 2009 has been of great con-

cern among policymakers. Several other researchers, including Summers (2014); Eggertsson,

Mehrotra, Singh, and Summers (2016); Pescatori and Turunen (2016); Laubach and Williams

(2016); Antolin-Diaz, Drechsel, and Petrella (2017); Holston, Laubach, and Williams (2017),

have also documented the secular decline in g-star over the past two decades.

Not surprisingly, the precision of the g-star estimates (and of the output gap) displays pat-

terns that align well with intuition. For instance, model specifications that incorporate survey

expectations (i.e., Base and Bivariate + Surv) yield more precise estimates than specifications

that ignore survey data. As discussed earlier, previous researchers have shown the unemploy-

ment data to be the most critical indicator for the estimation of g-star and the output gap, and

the plots provide evidence to that effect. For example, the model specification Bivariate, which

builds on the univariate GDP model by adding the unemployment rate, yields a substantial

improvement in the precision of the g-star estimate. Interestingly, the g-star estimate’s preci-

sion from Bivariate is about the same as the Base-NoSurv, suggesting that unemployment is

the most crucial variable influencing estimation of g-star. However, as we show shortly, model

comparison results indicate support for Base-NoSurv over Bivariate in the output gap case.

Output gap estimates

Next, we examine the estimates of the output gap. In Figure 4, panels (d) and (e) plot the

output gap estimates from the same sources as in the case of g-star, and panel (f) plots the

corresponding precision. Overall, the estimates of the output gap from Base and Base-NoSurv

are quite similar. They accord well with the NBER recession dates. Furthermore, as noted by

Morley and Piger (2012) and Johannsen and Mertens (2021), our model-based estimates provide

evidence of asymmetry in that recessions are shorter in duration but deeper than expansions

in the US. It is instructive to highlight that estimates imply a more negative output gap (of

−10.5%; posterior mean) during the 1981-82 recession compared to the Great Recession period

(−7%) when output fell more dramatically. At a first pass, this may seem odd. But a closer

inspection reveals that in comparison to the 1981-82 recession, during the Great Recession,

g-star fell significantly (as can be seen in panel a), resulting in a smaller negative output gap;

in contrast, during the 1981-82 recession, g-star is estimated to have remained stable.

Bivariate models are consistent with a similar story, but there are notable differences in

the estimates implied from a univariate model. For instance, the latter model suggests a less

dramatic fall in the output gap in 1973-74, 1981-82, and 2007-09 recessions. In the mild 2001

recession, the univariate model estimates a positive output gap, although less positive than

before the recession. Also, as of 2019, according to this model, the output gap remains negative,

which is in sharp contrast to other models and the consensus view (e.g., the CBO output gap).

The precision estimates and the Bayesian model comparison indicate the inferior quality

of the univariate model’s output gap estimate. Table 5 reports the assessment of model fit to
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the GDP data for the various model specifications discussed in this section. As in the case

of g-star, the output gap estimate from the univariate model is subject to a great deal of

uncertainty. The bivariate model, which brings additional information from the unemployment

rate, helps improve the precision significantly. This improved precision is also reflected in the

bivariate model’s substantially improved fit to GDP data compared to the univariate model

(Bivariate: -280.4 vs. Univariate: -296.5). In our subjective assessment, the estimate of the

bivariate model’s output gap is more reasonable because its trajectory aligns well with Base

and Base-NoSurv, and as shown shortly, with the consensus view.

Further improvements in precision are realized by bringing in additional information from

the surveys (comparing Bivariate vs. Bivariate+Surv); however, the model fit, which reflects

uncertainty about other model parameters in addition to g-star and the output gap, is little

changed – in fact, it slightly deteriorates. The usefulness of survey data in improving the qual-

ity of the g-star and output gap estimates is also apparent comparing precision between Base

and Base-NoSurv; however, model fit is nearly similar. Contributing to comparable model fit

between the two models is that from 1990 onward, the precision of the output gap across the

two models is identical. Unlike, in the case of g-star, the Base-NoSurv yields significantly more

precise estimates of the output gap than Bivariate, suggesting the usefulness of the additional

information and structure embedded in Base-NoSurv, hence, on net the slightly better fit of the

Base-NoSurv model to GDP data compared to Bivariate (Base-NoSurv: -279.1 vs. Bivariate:

-280.4)

Posterior parameter estimates for the output block

Next, we discuss the Base model’s parameter estimates of the output block that drive the

dynamics of g-star and the output gap. The posterior mean estimates of parameters ρg1 and ρg2
indicate a high degree of persistence (ρg1 + ρg2 = 0.74) and suggest a hump-shaped response of

the output gap to shocks (as ρg1 > 1). These parameters are precisely estimated as evidenced by

tight posterior credible intervals. The posterior estimate of parameter λg (the coefficient on the

unemployment gap in the output gap equation) is negative and highly significant statistically.

The estimated posterior mean of λg is −0.46 (with 90% interval −0.58 to −0.34). Similarly,

the parameter φu (the coefficient on the output gap in the unemployment equation), discussed

earlier, is also negative and highly significant statistically. Together, these estimates indicate

a strong Okun’s law relationship in the data. The implied posterior mean estimate of the

Okun’s law coefficient,
(1−ρu1−ρu2 )

φu
is −2.1, with 90% credible intervals spanning −2.3 to −1.8.

This estimated coefficient is strikingly identical to the conventional estimate often discussed in

macroeconomic textbooks. Therefore, not surprisingly, both the estimated output gap and the

unemployment gap (shown earlier) reveal similar cyclical dynamics. For instance, according to

both cyclical measures, the 1981-82 recession is estimated to have been deeper than the Great

Recession.

The parameter ar, which relates the output gap to the real rate gap (characterizing the IS
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relation), is negative and much smaller than the prior mean. The estimated posterior mean of

ar is −0.07 (with 90% interval −0.14 to −0.00).

The posterior mean estimate of E(σ2
gdp∗), the variance parameter of the innovations to the

process governing the evolution of g-star (and gdp-star), is nearly identical across the Base and

Base-NoSurv models: 0.022. For comparison, the prior mean E(σ2
gdp∗) is 0.012. Similarly, for

the output gap, the posterior mean estimate of E(σ2
ogap), the variance parameter of the innova-

tions to the IS equation, is also identical across the two models: 0.722 (compared with a prior

of 12).50 The estimation results suggest that the data are quite informative in influencing the

dynamics of both the output gap and g-star, confirming Kiley (2020).

Model-based estimates of the output gap vs. the CBO and others

Figure 5 presents estimates from outside sources, the CBO and the LW model, to gauge how

our model-based output gap estimates compare to measures from other sources. Also plotted are

estimates from Base and Base-NoSurv in panel (a) and from the Bivariate and Bivariate+Surv

models in panel (b) to facilitate comparison with the outside estimates. A few observations

immediately stand out. First, the output gap estimate implied from the LW model is notably

different over most of the sample period. In particular, during the Great Recession period,

the output gap from LW turned slightly negative, while other estimates implied larger negative

gaps. The slight negative gap in the LW model is the result of the LW model estimating a

dramatic fall in potential output, in line with the collapse in actual output.

Second, both the Base and Base-NoSurv models produce estimates of the output gap gener-

ally similar to the CBO estimate. This close similarity is notable because the CBO approach is

based upon an entirely different methodology, a production function approach (see Shackleton

(2018)).51. Note that the Bivariate models of real GDP and the unemployment rate (with and

without survey), which are nested specifications of our bigger Base model, produce estimates

of the output gap broadly similar, though not identical, to our two main model specifications.

Interestingly, in periods when the output gap estimates from our Base (and Base-NoSurv) differ

from the CBO estimates, the Bivariate models’ estimates are identical to the CBO’s. And in

periods when the Bivariate models differ from CBO, the Base (and Base-NoSurv) estimates are

identical to CBO’s.

The estimation results suggest an important takeaway: that joint modeling of real GDP and

the unemployment rate is the key to obtaining credible output gap estimates. Morley and Wong

(2020), who estimate the output gap using a large BVAR, also found that the unemployment

rate is the most crucial indicator for the output gap. (In Section 6, we compare our model

50Note, our prior setting implying a high ratio of
σ2
ogap

σ2
gdp∗

is consistent with the high noise-to-signal ratio

suggested in Kamber, Morley, and Wong (2018). Specifically, they recommend fixing the noise-to-signal ratio to
a high value to obtain large and more persistent cycles when estimating output using Morley, Nelson, and Zivot
(2003) UC model with maximum likelihood estimation.

51We note that in recent years, more and more papers using UC models, which jointly model real GDP growth
and the unemployment rate, yield estimates of the output gap similar to the CBO output gap (e.g., Johannsen
and Mertens, 2021; Berger, Everaert, and Vierke, 2016; Kiley, 2020; González-Astudillo and Laforte, 2020)
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estimates with additional estimates, including Morley and Wong’s). Recently, Banbura and

Bobeica (2020) use a range of small-scale UC models to estimate the output gap and similarly

find that the unemployment rate is the most valuable indicator.

Our paper’s result indicating a close resemblance of our models’ output gap estimates to

the CBO’s output gap provides evidence supporting the common practice of using output gap

estimates from the CBO as an exogenous variable in empirical macroeconomic models (e.g.,

JM; Stock and Watson, 2020). We view this result as a useful contribution to the applied

macroeconomics literature.

On the one hand, the fact that model-based estimates of the output gap bear a strong resem-

blance to institutional forecasts, i.e., CBO, is encouraging and lends credibility to our model(s).

However, on the other hand, in light of the evidence reported in Coibion, Gorodnichenko, and

Ulate (2018), the strong resemblance to outside estimates is an unfortunate outcome. We say

this for the following reason. Coibion, Gorodnichenko, and Ulate examine estimates of potential

output taken from a variety of model-based and external sources, including the CBO and survey

forecasts, and based on a range of shock measures, they find that (in real time) the estimates

of potential output are unable to distinguish between transitory and permanent shocks effec-

tively. Put differently, they find that their estimates of potential output respond “gradually

and similarly” to both supply shocks and demand shocks that drive cyclical fluctuations in real

GDP. This is unfortunate, since, by definition, potential output (and g-star) should only adjust

in response to permanent shocks.

Coibion, Gorodnichenko, and Ulate (2018) in their conclusion postulate whether a frame-

work that jointly estimates the dynamics of potential output with other relevant stars (as theory

implies) would better distinguish between permanent and transitory components and hence lead

to more credible estimates of potential output. Unfortunately, our model estimates, based on

both full sample and real time (shown in Section 5), suggest otherwise.

4.3. Estimation results for p-star

Figure 6 presents posterior estimates of p-star and other parameters of the productivity

block. Panels (a), (b), and (c) present p-star estimates from the Base, Base-NoSurv, and

Base-W*RW models, respectively. Both the posterior mean and the 90% credible intervals are

shown. Also plotted is the actual labor productivity series. A visual inspection of the actual

series indicates the unusually high volatility of the quarterly productivity data. In addition,

this series is subject to a high-degree of revisions in subsequent data vintages, suggesting the

extreme difficulties of its measurement in real time (see Jacobs and van Norden, 2016). Perhaps,

a quote from the former chair of the Federal Reserve, Alan Greenspan (courtesy of Jacobs and

van Norden, 2016), would be instructive to reflect a general sentiment about the productivity

data:

“The productivity numbers are very rough estimates because we are measuring a whole set of

production outputs from one set of data and a whole set of labor inputs from a different set.

33



That they come out even remotely measuring actual labor productivity is open to question. . . ”

(Transcript: Meeting of the Federal Open Market Committee, March 25, 1998, p. 96)

Not surprisingly, researchers have emphasized that these difficulties of extreme volatility,

extensive revisions, and real-time measurement issues with productivity data complicate its

trend-cycle decomposition (e.g., Edge, Laubach, and Williams, 2007; Kahn and Rich, 2007).

Our model-based estimates reflect these challenges. For instance, the estimate of the parameter

ρp, reported in Table 2, indicates close to zero persistence in the labor productivity data, defined

as the difference between the growth rate in labor productivity and p-star. Similarly, our

estimation indicates that the labor productivity data have very little influence on the estimate

of p-star. Put differently, the data are so volatile to allow for a meaningful identification of

trend in the productivity data. The posterior mean of E(σ2
p∗), the variance of the shock process

for p-star, is essentially the same as the prior mean.52 As a result, the degree of time variation

in p-star is primarily influenced by the prior setting. So conditional on our prior belief, which

allows p-star to evolve slowly from one quarter to the next, we find considerable evidence of

gradual time variation in p-star over the post-war sample. The evidence of time variation is

economically significant and is consistent with the findings of Roberts (2001), Benati (2007),

Edge, Laubach, and Williams (2007), and Fernald (2007).

Comparing across the top three panels in the figure, the paths of p-star (posterior mean

estimates) from Base and Base-NoSur are lower than Base-W*RW. The latter model removes

the restriction that the long-run w-star grows at a rate equal to the sum of pi-star and p-star.

So removing this restriction eliminates the direct influence on p-star from wages and prices and

helps raise the level of p-star. As evident from the Bayesian model comparison reported in

Table 6, the elimination of this restriction improves the fit of the model to the productivity

data but reduces the overall model fit to other data, particularly interest rates – via the changes

in pi-star and u-star in the Taylor-type rule equation. That said, all three models generally

indicate similar broad patterns in p-star.

After averaging between 2% and 3% in the 1960s, the models indicate that p-star experienced

a sharp deceleration in the 1970s through mid-1980s, mirroring the dramatic fall in productivity

growth. Both Base and Base-NoSurv estimates show p-star trending lower from 2.4% (2.3%)

in early 1970 to 0.5% by mid-1980, whereas Base-W*RW has it falling close to 1.5%, with wide

90% credible intervals that range from 0.4% to 2.3%. From there on through to the late 1990s,

p-star increased sharply, at a pace roughly equivalent to its deceleration in prior periods, to

reach a level of 2.0 to 2.4% by 1999. The literature attributes part of this acceleration in the

latter half of the 1990s to the information technology boom. Roberts (2001), Edge, Laubach,

and Williams (2007), and Benati (2007) document estimates of trend productivity generally

similar to the p-star implied from the Base-W*RW model.53

52We tried different values for the prior mean on this parameter, and found that the posterior moves with the
prior.

53Edge, Laubach, and Williams (2007), who collect real-time estimates of long-run productivity from vari-
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In the 2000s, the models have p-star gradually declining to a level close to 1.0%-1.2% by

2010. It remained close to that level through most of the past decade, but since 2018, it has

steadily increased. At the end of our sample, all three models estimate the posterior mean

of p-star at, or close to, 1.5%. As we show in appendix A12, these estimates of p-star are

consistent with the narrative implied by the two-regime Markov-switching model of Kahn and

Rich (2007), an influential contribution to the trend productivity literature.

The uncertainty around the posterior mean estimates of p-star is large. Panel (d) quantifies

this uncertainty by reporting the width of the 90% credible intervals corresponding to all three

models. The plots provide evidence that the theoretical restriction (defined by eq. 28) con-

tributes to a substantially improved precision of p-star (just as it does for pi-star and w-star),

as is evident in the Base and Base-NoSurv plots lying below the Base-W*RW. Interestingly,

the estimate of p-star from the Base is more precise than Base-NoSurv in 1960 through the

mid-1980s, even though we do not utilize survey-based long-run expectations of productivity

in the estimation of our model. Based on the Bayesian model comparison, the Base model’s

fit to the productivity data is marginally better than Base-NoSurv. The improved precision

and better fit of the Base model to the productivity data suggest there are important spillover

effects in the estimation from survey forecasts of other stars.

Cyclical dynamics of labor productivity

Panel (e) plots the estimate of the parameter λp, which relates cyclical unemployment to the

productivity gap, from all three models. The plots indicate a high level of uncertainty around the

estimates of λp. The 90% credible intervals are wide, such that they include both positive and

negative values, complicating reliable inference. Going just by the posterior mean estimate,

the evidence suggests a countercyclical behavior of labor productivity, with this relationship

weakening over time.

The model specification Base-P*CycOutputgap, which relates productivity to the output

gap instead of the unemployment gap (through parameter φp), provides generally similar infer-

ence about the cyclical nature of labor productivity. The plot for the time-varying parameter

φp is relegated to appendix A13 to conserve space. The credible intervals are wide and include

both positive and negative values. Based on the posterior estimate of parameter φp, produc-

tivity is procyclical in the 1960s and post-2010, but it is either acyclical or countercyclical in

other periods. Overall, the empirical evidence generally corroborates the evidence presented in

Gali and van Rens (2020). The model comparison results indicate a slightly inferior fit of the

Base-P*CycOutputgap model compared to Base (-608.1 vs. -606.9 in the case of productivity

data and -1773.8 vs. -1771.7 for the overall fit).

The importance of SV in the productivity equation

ous sources, including historical Economic Reports of the President, document a similar pattern in the trend
productivity estimates.
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An essential element of our decomposition of labor productivity into the trend, cyclical, and

idiosyncratic components, which others have abstracted from, is that we permit a time-varying

variance of the idiosyncratic component. Empirically, our results show this to be an important

extension, as shown in the SV plots included in panel (f) and the model comparison results

reported in Table 6. The plots indicate statistically significant evidence of time variation in

the volatility of the idiosyncratic component. The model comparison further provides evidence

supporting SV inclusion, as the Base-NoSV is the worst performing and has a significantly worse

fit to the productivity data compared to Base.

We also explored the possibility that the SV may be soaking up the variation in produc-

tivity, which otherwise would have been attributed to the cyclical component of productivity.

The model specification Base-NoSV, which shuts down SV in the idiosyncratic component of

productivity (and other model equations), yields estimates of λp similar to Base, suggesting

that SV is not contributing to the ambiguous result on the cyclicality of labor productivity.

4.4. Estimation results for π-star

Panels (a) and (b) of Figure 7 plot the posterior mean estimates of pi-star along with the

90% credible intervals from the Base and Base-NoSurv model specifications, respectively. Panel

(c) plots the corresponding precision estimates, defined as the width of the 90% intervals. A

quick visual inspection shows that the pi-star from the Base specification is significantly more

precise than Base-NoSurv, as evidenced by narrower credible bands and the precision plot

corresponding to Base lying below the Base-NoSurv plot. Based on the marginal likelihood

criteria, the fit of the inflation equation to the data in the case of Base is substantially greater

than Base-NoSurv (as reported in Table 8). The fit of the overall Base model to the data is

also higher than Base-NoSurv. Our finding that adding survey expectations improves both the

model fit and the precision of pi-star is consistent with CCK.

The broad contours reflected in the posterior mean that pi-stars from the two models are

similar to those documented elsewhere in the literature (e.g., CCK). For instance, pi-star was

low in the 1960s, high in the 1970s, fell sharply in the 1980s, continued a steady deceleration

in the 1990s, fluctuated in a narrow range between 2.0% and 2.5% in the 2000s, and has been

below 2% since 2012. This general pattern is consistent with the widely held view. Focusing

on the specifics, unlike some papers (e.g., Stock and Watson, 2007; Mertens, 2016), which show

two peaks in pi-star, one in the mid-1970s, and another in the early 1980s, our model-based

estimates (both with and without survey data) do not show the earlier peak (similar to CCK).

Relatedly, in those same papers, pi-star is estimated to peak at a level of 10% or higher; in

contrast, the mean estimate of pi-star in our model specifications peaks at a lower level (similar

to CCK and Mertens, 2016 – in his model specification that is augmented with survey data).54

54Since both Stock and Watson (2007) and Mertens (2016) endow the RW process governing pi-star with
SV, whereas we do not, this difference in the modeling assumption may explain the difference in the pi-star
estimates around the Great Inflation period. However, CCK, who also allow SV in the pi-star process, yield
pi-star estimates generally similar to ours, suggesting that the SV assumption is likely not the answer.
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Comparing estimates from Base and Base-NoSurv specifications, the level of pi-star is similar

in the 1960s but starting in early 1970, pi-star from the Base specification sharply accelerates,

to peak at 6% in early 1980, while the estimates of pi-star from the Base-NoSurv specification

also accelerate but peak at a lower level of 4.5%. As shown, uncertainty about pi-star increases

sharply in early 1980, with the Base-NoSurv estimates experiencing a much more dramatic

rise. It is the case that uncertainty around pi-star (as measured by the width of the 90%

credible intervals) inferred from the Base-NoSurv is higher compared to the Base throughout

the estimation sample. But in early 1980, the differential in uncertainty is twice as large, as

can be seen comparing the dotted and solid plots in panel (c).

A similar rise in model-based estimates of pi-star uncertainty in the late 1970s through early

1980 (known as the Great Inflation period) has been noted elsewhere (e.g., Mertens, 2016). A

subset of the literature attributes the rise in pi-star uncertainty to the un-anchoring of inflation

expectations during the Great Inflation period. Beginning in early 1980 and continuing through

early 2000, both models have (posterior mean of) pi-star steadily declining to 2%. Between 2000

and 2012, whereas in the case of Base, pi-star is flat at 2%, in Base-NoSurv, it is stable at a

slightly higher level of 2.3%. Since 2012, pi-star has slowly moved down to reach 1.5% (in Base)

and 1.4% (in Base-NoSurv).

Inflation gap persistence

Panel (d) shows the posterior mean estimates of parameter ρπ for Base (solid line) and Base-

NoSurv (dotted line). Also plotted are the 90% credible intervals from the Base model. As is

evident, the uncertainty around the posterior mean is high. That said, both models indicate

quite similar estimates of persistence in the deviations of inflation from pi-star. There is also

strong evidence of time variation in inflation gap persistence. For example, gap persistence was

low (0.25 to 0.35) in early 1960, but from there on began to increase steadily, reaching close

to 0.85 by early 1970, and remained at that level through the early 1980s. Subsequently, the

persistence had declined steadily to 0.4 by the early 1990s. From the late 1990s to the early

2000s, persistence fell further to 0.3, and it remains at that level.

Price Phillips curve

Panel (e) plots the posterior mean estimate of parameter λπ, which is the slope of the price

Phillips curve. As before, the plots from the main model specifications are shown. (The 90%

credible intervals are from the Base model.) The plots indicate that both model specifications

yield very similar estimates of the parameter linking the inflation gap to the unemployment gap.

The estimates also indicate strong evidence of time variation in the slope of the Phillips curve.

For example, both models estimate a steeper Phillips curve in the 1960s that subsequently

weakens (becomes less negative) over time through 2010. From there on, it slowly begins to

become steeper (more negative), ending 2019 at -0.23, which is still weak, historically speaking,

and is surrounded by wide intervals spanning -0.05 to -0.52. This pattern is consistent with
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the familiar narrative (also documented in several other papers) that the “Phillips curve has

weakened over time.”

SV in price inflation equation

Panel (f) plots the volatility estimates (i.e., the standard deviation of the shocks to the

inflation gap, eh
π
t ) corresponding to the two model specifications. The figure shows that the

posterior mean estimates are quite similar. The estimates imply high volatility during the pe-

riod of the Great Inflation that fell subsequently. Inflation volatility increased sharply again

during the Great Recession but has trended lower since then. By 2019, inflation volatility had

returned to the low levels of the early 2000s but remains shy of the historic lows of the mid-1960s

and mid-1990s. The contours of the volatility in the inflation gap are generally similar to those

reported in CCK and Chan, Koop, and Potter (2013). Bayesian model comparison indicates

strong evidence supporting the inclusion of SV in the price inflation equation.

Link between survey and pi-star

In Figure A6 (online appendix), panels (a) and (b) plot the posterior estimates of the coef-

ficients Cπ and βπ, which provide a sense of the estimated relationship between survey forecast

and pi-star. The prior assumes an unbiased relationship between survey forecasts and pi-star

(i.e., prior mean βπ = 1 and at all periods Cπt = 0). The model estimation yields a posterior

mean estimate of 0.99 for βπ, with 90% credible intervals spanning 0.91 to 1.07 (also reported

in Table 2). The posterior mean of Cπt displays considerable time variation; however, the 90%

credible intervals, for the most part, include zero. Taken together, the posterior estimates of

βπ and Cπt imply that the survey forecast, on average, is a somewhat biased measure of pi-star.

This latter result confirms the findings of CCK.

In the online appendix A11.a, we include the results and a discussion comparing pi-star

estimates from the Base model to external models: CCK, CKP, and UCSV. The estimates

indicate that the CCK model generates the most precise pi-star, followed by the Base model,

CKP, and UCSV. The latter model yields volatile and erratic estimates of pi-star (and precision).

Summary: pi-star

All told, we summarize the analysis of the inflation block as follows. First, the Base model

and its variants indicate contours of pi-star that corroborate the narrative documented else-

where in the literature. However, in some periods, pi-star estimates can differ notably across

models, and as emphasized in CCK, these differences can have important implications for mon-

etary policy. Second, comparing across Base and Base-NoSurv specifications, and comparing

the Base specification with outside models, strongly suggest the usefulness of survey forecasts

in improving the econometric estimation of pi-star (i.e., survey forecast information yields sen-

sible estimates of pi-star and improved precision), hence, the corroborating evidence in CCK,
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Mertens, 2016, and Nason and Smith (2021). Third, we find evidence in support of incorpo-

rating time variation in the price Phillips curve, specifically, suggesting, in a broad sense, a

weakening of the relationship between inflation and labor market slack since the 1960s, some-

thing also documented by several others (e.g., CKP; Stella and Stock, 2015; Del Negro et al.,

2020).

Fourth, as found by CKP, CCK, Mertens and Nason (2020), among others, we find evidence

supporting time variation in the persistence of the inflation gap. Fifth, as noted by many,

including Stock and Watson (2007) and Clark and Doh (2014), we find strong evidence of SV

in the innovations of the inflation equation. Sixth, as in CCK, we find evidence that the survey

forecast of PCE inflation is a biased measure of pi-star. Lastly, the Base model’s improved fit

to inflation data compared to some of its variants provides evidence supporting the long-run

theoretical restriction defined by equation (28), which imposes w-star = pi-star + p-star.

4.5. Estimation results for W-star

In modeling w-star, a novel feature of our framework is the decomposition of w-star into its

fundamental components, pi-star and p-star. Figure 8 presents posterior estimates of w-star

along with the decomposition. The first row in the figure plots estimates from the Base model,

and the second row plots estimates from the Base-NoSurv. The third row plots p-star estimates

from other model variants alongside Base and Base-NoSurv models, and also presents precision

estimates of w-star.

The estimates imply that w-star increased steadily in the 1970s and peaked in the early

1980s. This increasing w-star reflected an upward drift in pi-star that more than offset the

downward drift in p-star, as evidenced by the widening in the shaded area representing pi-star

and the slight narrowing of the shaded area representing p-star. The Base model implies that

w-star peaked at 7.3% in the early 1980s, while Base-NoSurv has w-star peaking at 6%. Both

models have w-star sharply drifting lower through much of the 1980s, to reach near 4% by early

1990. From there on, the path of w-star across the two models is very similar and indicates a

gradual slowing to 2.5% by the end of 2017. W-star moved up to 3.0% by the end of 2018, only

to fall back to 2.8% in 2019.

Not surprisingly, w-star is more precisely estimated in the Base model than in the Base-

NoSurv model, as shown in panel (f). The considerable uncertainty around w-star, implied by

the Base-NoSurv model during the 1970s, is mostly driven by pi-star. As noted earlier, the

pi-star estimate from the Base-NoSurv was highly imprecise during the 1970s. Interestingly,

despite the inferior precision of the Base-NoSurv compared to Base, the Bayesian model com-

parison suggests a better fit of the Base-NoSurv model to the nominal wage data than Base (see

Table 7). However, the overall fit of the Base-NoSurv to the data (which include data beyond

the nominal wage) is slightly worse than Base.

Sensitivity of w-star to modeling assumptions
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Panel (e) plots estimates of w-star from two additional Base model variants: Base-W*RW

and Base-NoPT. The Base-W*RW model eliminates the long-run restriction that w-star is the

sum of p-star and pi-star (on average) and instead models w-star as an RW process. Inter-

estingly, the path of w-star implied by Base-W*RW is similar to Base-NoSurv through the

mid-1980s. From there on, w-star from Base-W*RW is below the Base-NoSurv through early

2010. Since then, it is identical to Base and Base-NoSurv. Although in the first half of the

estimation sample, w-star from Base-W*RW is less precisely estimated than Base, in the sec-

ond half of the sample, it is more precise. According to the Bayesian model comparison, the

fit of the Base-W*RW to the nominal wage data is inferior to both Base-NoSurv and Base.

However, compared to Base, the degree of inferiority is only slight. The overall fit of the Base-

W*RW model to the data is substantially worse than that achieved by either the Base or the

Base-NoSurv model.

The Base-NoPT model eliminates the pass-through from prices, i.e., it removes the price

inflation gap from the equation describing the wage inflation gap. In other words, the direct link

between the cyclical components of prices and nominal wages is eliminated, but the connection

between the permanent components pi-star and w-star remains. Doing so has notable impli-

cations for the estimate of w-star and the model’s fit. As shown in panel (e), w-star implied

from Base-NoPT is higher than that implied by the other models through the first half of the

sample. While the Base model has w-star peaking at a little above 7% in the early 1980s, the

Base-NoPT model implies a higher peak of 8.2%. The acceleration in w-star implied by the

Base-NoPT model during the 1970s is much stronger than that implied by the Base model es-

timates. This stronger path of w-star is associated with more precise estimates of w-star in the

1970s compared to the Base and other models, as can be seen in panel (f). However, according

to the Bayesian model comparison reported in Table 7, removing the connection between the

cyclical components negatively impacts the model fit, as evidenced by the substantially inferior

fit of the Base-NoPT model to data compared to the Base model.

Wage persistence, wage Phillips curve, pass-through from prices, and SV in the wage equation

Figure 9 presents the time-varying posterior estimates of the parameters describing the per-

sistence in the nominal wage gap, the wage Phillips curve, the short-run pass-through from

prices to wages, and the stochastic volatility of the shocks to the nominal wage equation. Esti-

mates from three models, Base, Base-NoSurv, and Base-W*RW, are presented. A quick visual

inspection indicates both statistically and economically significant evidence of time variation in

these parameters that capture important empirical relationships.

Wage gap persistence

Panel (a) plots the posterior estimates of the parameter ρw, capturing the persistence in

the nominal wage inflation gap. Also included are the 90% credible intervals from the Base

model. The posterior mean estimates for the three models indicate increasing persistence in the
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wage inflation gap beginning in early 1960 and peaking in mid-1980. The Base model shows

a notably higher peak at 0.45 compared to 0.39 and 0.33 for Base-NoSurv and Base-W*RW,

respectively. The higher peak suggests that the Base model attributes a higher share of fluctu-

ations in cyclical nominal wages to the persistence component than that implied by the other

two models. From the mid-1980s to the early 1990s, the persistence steadily declines but after

that increases through the mid-2000s; from there on through the early 2010s, the estimated

persistence in the nominal wage gap falls to levels seen in the mid-1970s. Since then, it has

been slowly increasing. It is worth noting that the credible intervals around the posterior mean

are wide, suggesting high uncertainty in the inference about the estimated persistence.

Wage Phillips curve

In Figure 9, panel (b) plots the estimates of parameter λw, which captures the wage Phillips

curve relationship in the US data. The plot provides strong evidence supporting the existence of

the wage Phillips curve in the post-war data. Notably, the plot also offers convincing evidence

of time variation in this relationship. According to the posterior mean estimate, from the early

1960s through mid-1970s, our models imply that the strength of the wage Phillips curve is at

a moderate level, but from there on through the mid-1980s, the wage Phillips curve steepened

sharply in Base and Base-NoSurv (less steep in Base-W*RW). By the mid-1980s, in the Base

model, the posterior mean of the wage Phillips curve parameter is estimated to be −0.5, with

90% credible intervals ranging from −0.23 to −0.75. From there on, it gradually flattened until

the mid-2000s, but soon afterward, it began to flatten more rapidly until early 2010. In 2010,

all three models estimate the posterior mean of the Phillips curve parameter at −0.2. The

prevalence of the downward wage rigidities during the Great Recession is among the primary

explanations for the flattening wage Phillips curve (see Daly and Hobijn, 2014).

From 2010 onward, with an improving economy, the estimated wage Phillips curve has

steadily steepened. Our empirical evidence on the wage Phillips curve is consistent with the

findings of Knotek II and Zaman (2014), Peneva and Rudd (2017), and Gaĺı and Gambetti

(2019), all of whom document strong support for the continuing existence of a wage Phillips

curve in the US data.

Pass-through from prices

Panel (c) plots the estimates of the short-run pass-through from prices to wages defined

as
κwt

1−ρwt
. The posterior estimates of pass-through indicate a weakening relationship between

cyclical nominal wage inflation and cyclical price inflation over the estimation sample, confirm-

ing the evidence presented in Peneva and Rudd (2017) and Knotek II and Zaman (2014). The

relationship between the two was strong in the 1970s to the mid-1980s, but since then, it has

gradually weakened such that it has been nonexistent (i.e., the pass-through is estimated to be

zero) for the past decade. This period of the breakdown in the relationship between the two

cyclical components has coincided with a period of low and stable price inflation. The literature
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has offered various explanations for this breakdown in the relationship, including an improved

anchoring of inflation expectations (Peneva and Rudd, 2017) and an amplification of downward

wage rigidities during low levels of price inflation (Daly and Hobijn, 2014).

Our empirical finding also supports the results of Bobeica, Ciccarelli, and Vansteenkiste

(2019), who using euro area and US data, show that the link between labor compensation and

price inflation in the short run importantly depends on the prevailing inflation regime. They

find that a high inflation regime is associated with a tighter connection between labor costs

and price inflation and a low inflation regime is associated with a weaker link. All three of

our models imply similar inference. Both Base-NoSurv and Base-W*RW indicate a stronger

pass-through than the Base model in the 1970s and 1980s, periods associated with high infla-

tion in the US. Comparing between panels (a) and (c) suggests that during that period, Base

attributes more of the increase in nominal wage inflation to an increase in persistence than to

the pass-through from price inflation, hence the less strong pass-through estimate than seen in

the Base-NoSurv and Base-W*RW models.

SV in the wage equation

Panel (d) plots the time-varying standard deviation of the innovations to the nominal wage

inflation gap. The plot indicates the importance of allowing for SV in the equation for nominal

wage inflation. All three models show very similar posterior mean estimates of SV. The estimates

suggest that volatility in the early 1960s was high but then subsequently fell, rising again in the

late 1960s and early 1970s. From there on through the mid-1970s, it fell steeply. It increased in

the early 1980s, but less sharply than in the previous decades. From the mid-1980s through the

early 1990s, volatility moderated to low levels, and since then, it remains flat at that low level.

The Bayesian model comparison indicates further evidence supporting the inclusion of SV in

the wage equation, as evidenced by the substantially inferior fit of the Base-NoSV model to

the nominal wage inflation data compared to the Base and Base-NoSurv models (Base-NoSV:

-344.3 vs. Base: -277.5; see Table 7).

4.6. Estimation results for r-star

Figure 10 presents r-star and the “catch-all” component D estimates for our two main model

specifications. The top row of the figure plots the estimates of r-star (panel a) and component D

(panel b) from the Base model. Also included in panel (a) are the survey expectations of r-star

(which enters our Base model). As can be seen, the contours of (posterior mean) r-star from

the Base model track the survey estimate; this suggests that survey data play an influential role

in guiding the model’s assessment of r-star. The posterior mean estimate from the Base model

shows r-star staying relatively flat at 3.5% in the 1960s, and then slowly trending down through

the 1970s, to reach 3% by early 1980. Thereafter, it fluctuates in a range between 2.8% and

3.5% until the beginning of 2000. From there on, it steadily declines, reaching 1.1% at the end

2019.
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Panel (b) plots the estimate of component D, whose dynamics are shaped by the survey

expectations data and by information from the Taylor rule and IS equations. As can be seen in

the figure, component D is imprecisely estimated. According to the posterior mean estimate,

in the 1960s, component D exerts slight upward pressure on r-star that is mostly offset by

downward pressure coming from g-star (via equation 36), helping keep r-star relatively flat.

After that, with D remaining flat through 2000, developments in g-star shape the trajectory

of r-star. From 2000 onward, all forces (as captured through the model structure) work in the

same direction to push r-star steadily downward. The estimated link between r-star and g-star

is of moderate strength (posterior mean of parameter m = ζ
4 = 0.701); see Table 2); therefore,

movements in g-star play an influential role in driving r-star.

Moving on to the Base-NoSurv model specification, in panel (c), the mean estimate shows

r-star rising from 2% in early 1960 to 3.5% through early 1980 and then remaining stable

through early 2000. This trajectory is similar to that in González-Astudillo and Laforte (2020),

who also use the Taylor rule and information from long-term interest rates in their estimation.

From 2000 onward, r-star steadily declines, reaching 1.4% at the end of 2019. The trajectory

of r-star from 2000 onward is similar to that from the Base model. It is worth noting that our

models’ indication of a secular decline in r-star beginning in 2000 is also documented elsewhere

in the literature tackling r-star (the exception being JM).55 However, the extent of decline varies

considerably across studies. The literature offers various explanations for this secular decline in

r-star, including a trend decline in g-star (e.g., Laubach and Williams (2016)); rising premiums

for convenience yield, i.e., increased demand for safe and liquid Treasury bonds (see Del Negro

et al., 2017; Bullard, 2018); and excess global savings (Pescatori and Turunen, 2016).

The uncertainty around the r-star estimate from the Base-NoSurv model is substantially

higher than that in Base, as can be seen by comparing panel (a) and panel (c) of Figure 10, and

also shown in panel (b) of Figure 11. The increased uncertainty in r-star comes from component

D, which is imprecisely estimated without the survey data. Furthermore, based on the marginal

likelihood criteria, the Base model is favored over the Base-NoSurv model (see Table 9).

Without the survey information about r-star, the estimated link between g-star and r-star

is significantly weaker (posterior mean of m = ζ
4 = 0.390; see Table 2), which is consistent with

the evidence documented in Hamilton et al. (2016) and Lunsford and West (2019). Therefore,

the movements in component D significantly dominate the contours of r-star in the Base-NoSurv

model. Both the IS curve and Taylor-rule equations shape the evolution of component D. The

hump-shaped patterns in both D and r-star reflect the trends in real long-term interest rates

(informed from the IS equation) and short-term interest rates (from the Taylor-rule equation).

It is interesting to note that the r-star estimates from JM (and González-Astudillo and Laforte,

55JM document that r-star from their preferred specification (which allows for SV in the TR equation) is
generally flat over their sample, spanning 1960 through 2018. However, in an alternative specification, which
does not permit SV, the r-star estimate exhibits a decline in r-star similar to that documented elsewhere. In our
examination, r-star’s trajectory is little changed comparing between the Base specification and Base without SV
(i.e., Base-NoSV).
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2020) – who use the Taylor-rule equation and information from both short- and long-term

interest rates – also exhibit hump-shaped behavior (though, in the case of JM, it is only slight).

As we show shortly, the prior setting on the shock process for r-star (in our Base and Base-

NoSurv cases, component D) plays an essential role in shaping the contours of r-star.

As discussed earlier, the estimates of g-star from both the Base and Base-NoSurv models are

quite similar. Therefore, the primary source of the differential in the r-star estimates between

Base and Base-NoSurv is the quantitatively weaker relation estimated between r-star and g-star

in Base-NoSurv than Base.

Assessment of policy stance

Panel (e) of Figure 10 provides an assessment of the stance of monetary policy. Following

Pescatori and Turunen (2016), we gauge monetary policy’s stance as the deviation of the short-

term nominal interest rate from the long-run nominal neutral rate of interest (defined as the

sum of r* and pi*) – this is the interest rate gap from the Taylor-rule equation. A positive

interest rate gap characterizes a restrictive monetary policy stance, and a negative interest rate

gap implies a stimulative stance. The solid line corresponds to the policy stance inferred from

the Base model and the dashed line to that inferred from the Base-NoSurv model. Even with

notable differences in the estimates of r-star across the two models, the assessment of the policy

stance is remarkably similar throughout the sample. So why are they so similar?

The answer lies in the differences in pi-star estimates across two model specifications, as

shown in Figure 7 (panels a and b). In other words, the differences between r-star estimates

across the two models are compensated (i.e., offset) by the differences between pi-star, such that

the assessment about the stance of monetary policy across the two models is strikingly similar.

For instance, in the 1960s, the r-star estimate from the Base is on average 1.34 percentage points

(ppts) higher than that of Base-NoSurv. However, over the same period, the pi-star estimate

from the Base model is 0.54 ppt lower than that of the Base-NoSurv model, which reduces the

difference between their associated assessments of policy stance.

According to our model(s) estimates, the policy stance appeared to be slightly restrictive

before the Great Recession, but at the onset of the Great Recession, the policy stance immedi-

ately turned accommodative. Since then, it has remained very accommodative (reflecting the

effects of unconventional monetary policy). After peaking in late 2015, the degree of accommo-

dation has gradually declined (i.e., the interest rate gap has become less negative), such that,

by the end of 2019, it has edged closer to the neutral threshold.

A closer inspection of the figure reveals an interesting insight. Since 1990, both the degree

and duration of policy accommodation in response to the recession have been more significant

than in the previous recession. For instance, the monetary policy stance was more accom-

modative in terms of both level and duration following the 2001 recession than following the

1990-1991 recession. Similarly, during and following the Great Recession, the policy stance, in

terms of level and duration, was more significant than following the 2001 recession. Broadly
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speaking, our model-implied assessment of the stance of monetary policy mirrors that in the

assessment documented in Brand and Mazelis (2019).

Random walk assumption for r* vs. Base (and Base-NoSurv)

As is commonly done when estimating stars, a random walk assumption for r-star is a

popular choice (e.g., Kiley, 2020; JM). Accordingly, we explore this particular modeling choice’s

fit to the data and empirical properties by replacing the equation linking r-star to g-star and the

RW component D with an equation that assumes a random walk process for r-star in our main

model specifications (Base and Base-NoSurv). We denote these specifications, Base-R*RW and

Base-NoSurv-R*RW. By adopting an RW assumption for r-star, the models will be unable to

uncover any specific causes of movements in estimates of r-star.

Figure 11, panel (a) plots the posterior mean r-star estimates from the Base-R*RW and

Base-NoSurv-R*RW models. To facilitate comparison, also shown are estimates from Base and

Base-NoSurv models. Panel (b) plots the corresponding r-star precision estimates (defined as

the width of the 90% credible intervals). A few observations immediately stand out. First,

the estimated r-stars from model specifications with the RW assumption, although exhibiting

broadly similar contours, are higher than those obtained from the specifications that impose a

relationship between r-star and g-star. Second, from 2000 and onward, r-star estimates from the

specifications with the assumed link between r-star and g-star experience a more stark decline

than those from the specifications with the RW assumption. For instance, by late 2019, the

estimates of r-star from both the Base-R*RW and Base-NoSurv-R*RW models settle at close

to 2%, whereas those from the Base and Base-NoSurv models fall further to a range of 1.2 to

1.4%. This differential is mostly explained by the lack of direct downward pressure from g-star

in the specifications with the RW assumption.

Third, bringing in information from surveys improves the precision of the r-star estimates

substantially, irrespective of whether r-star is modeled simply as an RW process or as a combi-

nation of an RW component and a component linking r-star to g-star. Fourth, the specifications

that allow for a link between r-star and g-star are more precise than those that do not. The

Base specification generates the most precise r-star estimates relative to those obtained from

the other three specifications.

Based on the model comparison metric reported in Table 9, the model indicating the most

precise r-star does not necessarily rank as the best fitting model. The fit of the Base specification

is slightly inferior to that of both the Base-R*RW specification and the Base-NoSurv-R*RW,

but not by very much. This evidence nicely illustrates that the marginal likelihood metric has a

built-in penalty that increases as the model complexity goes up. When we compare between the

Base-NoSurv-R*RW and the Base-R*RW specifications, the addition of survey data increases

the model’s fit to the interest rate data slightly from -215.58 to -214.04 (but reduces overall

model fit marginally from -1769.3 to -1770.8). In comparison, moving from the Base-NoSurv

to the Base specification, the fit to the interest rate data increases, from -221.98 to -216.4 (and
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the overall model fit from -1772.8 to -1771.7).

Taken together, the evidence described above suggests that the RW assumption for r-star

is a viable option, but bringing in information from surveys helps improve precision of the

estimates of r-star substantially. Another result worth highlighting from the model comparison

exercise concerns the marginal value of survey information in the estimation of r-star. In a

model specification that imposes a relationship between r-star and g-star (e.g., Base; Base-

NoSurv), adding survey information is crucial in making the model a competitive alternative.

By bringing in survey information, which has a high correlation between g-star and r-star survey

expectations (0.8), the estimated link between g-star and r-star in the model becomes stronger

(m = ζ
4 = 0.701 in Base vs. m = ζ

4 = 0.390 in Base-NoSurv).

Given the evidence on model comparison and the precision of r-star estimates, our preferred

choice is the Base model because its fit to the data is competitive (just marginally inferior to

the specification with the RW assumption). And it produces the most precise r-star estimate

compared to the alternative specifications. An additional factor that influences our choice is

the model’s ability to provide an explanation for movements in r-star, which is made possible

because of its direct link to g-star.

In a supplementary set of exercises, we illustrate the usefulness of the Taylor-type rule

equation and the equation linking r-star to survey expectations for identifying r-star. The

addition of the Taylor-type rule equation turns out to be crucial to yielding plausible and

precise estimates of r-star (see appendix A10.d).

We also explored the role of data versus priors in determining r-star, and in the interest of

brevity, the results of the exercises are relegated to the online appendix (see A10.a). Here, we

briefly mention that the results indicate that in the case of the Base-NoSurv model, the prior

views determine the shape of the posterior for r-star, confirming Kiley (2020). However, in the

Base model, which links r-star to survey expectations, the data do have some influence. In the

case of the Base-NoSurv model, we also find that if we loosen the prior on the variance of the

r-star process (to values similar to those in Kiley), then the data begin to shape the posterior.

But this comes at the cost of a worsening fit to the interest rate data.

Overall, we find that when it comes to r-star, specification choices matter a lot (something

also highlighted by Clark and Kozicki (2005), Beyer and Wieland (2019), and Kiley (2020)). The

model specifications that include survey expectations yield estimates that are both reasonable

and the most precise. In our examinations, the Base specification, which allows for a link

between g-star and r-star, is equally preferred by the data to the variant of the Base specification

that assumes r-star as an RW. Since 2000, the best fitting model specifications indicate a steady

decline in r-star, similar to results documented elsewhere in the literature.
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5. Real-time Estimates and Forecasting

In this section, we perform two real-time, out-of-sample forecasting exercises. In the first

exercise, we compare the real-time forecasting performance of our two main models, Base and

Base-NoSurv. We evaluate both the point and density forecast accuracy for real GDP growth,

PCE inflation, the unemployment rate, nominal wage inflation, labor productivity growth, and

the shadow federal funds rate. We show that the Base model is more accurate on average

compared to Base-NoSurv for all variables of interest except the unemployment rate. We also

document our Base model’s superior forecasting properties relative to “hard to beat” bench-

marks, including some of the recently proposed UC models for inflation forecasting. By-products

of our real-time forecasting exercise are the real-time estimates of the stars from 1999 through

2019. We compare these real-time estimates to the final (smoothed) estimates – based on the

entire sample spanning 1959Q4 through 2019Q4.

In the second forecasting exercise, we illustrate the efficacy of the stars’ estimates produced

from our models by demonstrating their usefulness in forecasting with external models (e.g.,

steady-state VARs). We find that the quality of our estimates of the stars from the Base model

is generally competitive with the survey estimates, which are commonly used as proxies for

stars in VAR forecasting models. For brevity purposes, we relegate the discussion of this latter

exercise to the online appendix A5.

Table 10 presents the results from comparing the out-of-sample forecasting performance

(both point and density) between the two models over the forecast evaluation sample spanning

1999Q1 through 2019Q4. The forecast evaluation is based on real-time data vintages and uses a

recursively expanding estimation window, where each recursive run uses an additional quarterly

data point in the estimation sample.56 The forecast accuracy (point and density) is computed

from one-quarter ahead to 20 quarters out. Partly due to our focus on the medium-term horizon

and partly in the interest of space, we report accuracy metrics for 4, 8, 12, 16, and 20 quarters

ahead. We evaluate the forecast accuracy using real-time data; specifically, we treat the “actual”

as the third release of a given quarterly estimate.57 For instance, in the case of real GDP, the

third estimate for 2018Q4 corresponds to the GDP data available in late 2019Q1. The point

forecast accuracy is assessed using the root mean squared error (RMSE) metric, and the density

forecast accuracy is evaluated using the log predictive score (LPS). The statistical significance of

the point forecast accuracy is gauged using the Diebold-Mariano and West test and, in the case

of the density forecast, accuracy is based on the likelihood-ratio test of Amisano and Giacomini

56Going back in time means that we are using relatively fewer observations to estimate model(s). As is
commonly done when performing real-time forecasting using multivariate UC models, we need to tighten priors
on the shocks’ variances driving the latent components (see, for instance, Barbarino, Berge, Chen, and Stella,
2020). Accordingly, we devise a systematic approach to adjusting the prior on the scale parameters of the
inverse gamma distributions defining the variances of the stars. We multiply the scale parameter with the
factor = ( 2T

N
− 1) ∗ ( T

N+5(N−T )
), where N is the total sample size from 1959Q4 through 2019Q4, and T refers

to the number of data points in a given data vintage. At the end of the sample, the factor = 1 because T = N .
57Results are qualitatively similar if we instead use the revised data (2020Q1 vintage data) as the actual values

in the forecast evaluation exercises. The results are available on request from the author.

47



(2007).

The top panel of the table reports the results corresponding to the point forecast accuracy,

while the lower panel reports results for the density forecast accuracy. The numbers reported

in the table correspond to relative RMSE –RMSE Base relative to RMSE of Base-NoSurv – in

point forecast comparison, and relative mean LPS – LPS Base minus LPS Base-NoSurv – in

the case of density forecast comparison. Hence, numbers less than one in the top panel suggest

that the point forecast accuracy of the Base forecast is more accurate on average, and positive

numbers in the bottom panel suggest that the density forecast accuracy of the Base forecast is

more accurate than that of the Base-NoSurv forecast.

As is evident by the numbers reported in the table, except for the point forecast accuracy

of the unemployment rate, the evidence generally favors the Base model as more accurate than

Base-NoSurv. The evidence in support of the Base model is strongest for PCE inflation and

labor productivity growth. In the case of the unemployment rate, as was the case with the

in-sample model fit (see Table 3), the Base-NoSurv model outperforms the Base model in point

forecast accuracy. However, over the forecast evaluation sample, the uncertainty around the

point forecast of the unemployment rate implied by the Base-NoSurv model was higher than

that of the Base model (on average). This higher uncertainty contributed to inferior density

forecasts from the Base-NoSurv model compared to the Base model, as is evident by the positive

numbers in the row corresponding to the unemployment rate. It is generally the case across

all variables, except real GDP growth, that density forecasts from the Base model are more

accurate than those of the Base-NoSurv. In the case of real GDP growth, even though, for the

most part, the point forecast accuracy between the two models is similar on average, the density

forecasts from the Base-NoSurv model are more accurate than those from the Base model.

We also compared the forecasting performance of our Base model to the outside benchmark

models, which the forecasting literature has shown to be useful forecasting devices. Specifically,

we compare the accuracy of the inflation forecasts from our Base model to the following three

models, UCSV of Stock and Watson (2007) [UCSV], Chan, Koop, and Potter (2016) [CKP],

and Chan, Clark, and Koop (2018) [CCK]. We compare the accuracy of the unemployment rate

forecasts from our Base model to the Chan, Koop, and Potter (2016) model, and the accuracy

of the nominal wage inflation from the Base model to the UCSV model applied to the nominal

wage inflation – motivated by Knotek II (2015). Our forecasting results provide strong evidence

in support of our Base model’s competitive forecasting properties. For the sake of brevity, the

results are included in the online appendix A4 table A3.

Real-time versus final estimates

Up to this point, we only examined the smoothed estimates of the stars inferred using all

the sample data, i.e., from 1959Q4 through 2019Q4, which we denote here as final estimates. As

discussed in CKP and Clark and Kozicki (2005), the examination of final estimates is beneficial

for “historical analysis,” such as the evaluation of past policy. But for real-time analysis, such
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as forecasting and policymaking, real-time estimates at time t – estimates based on data and

model estimation through time t (instead of through 1:T) – are the relevant measures. In

estimating the stars, a voluminous number of papers have documented the typical pattern of

notable differences between real-time and final estimates; e.g., see Clark and Kozicki (2005) and

Beyer and Wieland (2019) for r-star and Tasci (2019) for u-star.58

Relatedly, several researchers have attributed the inability to precisely know the location

of these stars in real time to past policy mistakes; see Powell (2018) and references therein.

The documented differences between the real-time and final estimates, which at times could

be dramatic, and the recognition of these differences by policymakers have been the primary

reason limiting the usefulness of real-time estimates of the stars in policy discussions in recent

years (see Powell, 2018). Hence, there is a strong preference for methods that can provide more

credible inferences about stars in real time.59

Comparing real-time and final estimates of the stars from our Base model suggests that we

have made some progress in mitigating the difficulties in previous real-time estimation of the

stars. However, in the Base-NoSurv model, there is less success in mitigating this issue. We

believe a big reason for this lack of success in the latter case is that we estimate a very high-

dimensional model with a lot less data (as will be the case when stopping estimation at earlier

periods). An artifact of this is that it requires the imposition of very tight priors in earlier

periods than when estimating with more recent periods, which, in turn, affects the posterior

estimates of model parameters and the stars. This latter fact mechanically contributes to more

considerable observed differences between real-time and final estimates in the first half of the

sample period analyzed. In the case of the Base model, the use of survey information helps

anchor the estimates to more reasonable values even in the face of tight priors.

Figure 12 plots the real-time posterior mean estimates of the stars from 1999Q1 to 2019Q4.

Also plotted are the corresponding final (posterior mean) smoothed estimates and the 68% and

90% credible bands, respectively. The real-time estimates are the end-sample posterior mean (of

the smoothed) estimates at any given period. For example, the 1999Q1 estimate corresponds to

estimating the model(s) from 1959Q4 to 1999Q1; similarly, the 1999Q2 estimate corresponds to

estimating the models from 1959Q4 to 1999Q2. As can be seen, for the most part, the real-time

estimates of the stars generally remain within the credible intervals, especially the 68% credible

sets implied based on full-sample information. The exception is g-star, and in turn, the output

gap; the latter is shown in Figure A3 of the online appendix for brevity. In the case of g-star, the

real-time estimate, which before 2007 is not aware that the Great Recession (GR) is about to

58Both revisions to past data and the accrual of additional data could contribute to the observed differences
between the real-time and final estimates. The estimation with additional data has been found by many to be
the primary factor causing revisions to historical estimates of the stars and contributing to divergence between
the real-time and final estimates (see Tasci, 2019; Clark and Kozicki, 2005).

59The issue of imprecision in the estimation of stars is an important one. It has been long recognized that
considerable uncertainty surrounds the estimated stars complicating reliable inference (e.g., Cross, Darby, and
Ireland, 2008). Despite the stars’ imprecision, they continue to be used as inputs into policymaking and for other
purposes (see Williams, 2018; for r-star). After all, as discussed in Mester (2018), uncertainty about the stars is
just one source of uncertainty among many that confront policymakers.
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occur, is relatively upbeat, like the survey estimate (at 2.9% vs. 2.25% for the final). Between

2007 and 2011, the real-time estimate gradually decelerates to 2.5%, but from there on through

2015, it declines very rapidly, catching up to the final estimate.

Interestingly, the BC survey (which is real-time data) fell by only two-tenths over this period,

but between 2015 and 2017, it dropped another three-tenths to 2.0% and remained at that level

through the end of 2019. Whereas beyond 2017, the survey estimate remained flat, the real-

time model estimate gradually moved back up, partly in response to stronger realizations in real

GDP growth than the implied g-star. The more gradual decline in the real-time g-star during

the GR implies a larger (negative) output gap estimate than is indicated by the final estimate.

In the case of u-star, interestingly, in the first half of the forecast evaluation sample, the

real-time estimate generally fell outside the 68% credible intervals but inside the 90% intervals.

In contrast, in the second half, it remained inside the 68% intervals and tracked quite closely

the posterior mean of the final estimate. In the case of p-star, the real-time posterior mean

estimate largely remained inside the 68% intervals, and post-2007, the implied inference on

p-star is consistent with the final estimate, as is evident by the similar contours of the real-time

and final estimates. It is worth noting that both the real-time and the final estimates of p-star

are notably lower than the survey estimate of p-star; recall that the survey estimate of p-star

is not used in the estimation of the Base model.

In the case of pi-star, the real-time estimate closely tracked the final estimate from 1999

through 2004, and from there on through 2016, it averaged three-tenths higher. From 2017

through 2019, the real-time estimate once again closely tracked the final estimate. The contours

of the real-time and final estimates are similar, and the real-time estimate remained within the

90% credible intervals throughout the sample period analyzed. Consistent with a generally

higher real-time estimate of p-star and pi-star than the final estimate, the real-time estimate

of w-star is higher than the final. Just as in the case of p-star and pi-star, the contours of

the real-time and final estimates of w-star are similar, and the real-time estimate of w-star

remained within the 90% credible intervals. Also plotted are the implied survey estimates of

w-star, constructed by adding p-star and pi-star survey estimates. Arguably, these implied

estimates are implausibly high given that the actual realizations of nominal wage inflation in

the post-2007 period were mostly below these implied estimates. The results of a forecasting

exercise presented in the online appendix further confirm the implausibility of the implied survey

estimate.

In the case of r-star, the contours of the real-time and final estimates are remarkably similar.

Between 2000 and 2005, and post-2014, the real-time estimate closely tracked the final estimate.

From 2006 through 2013, the real-time estimate averaged 35 basis points higher than the final

estimate. In our assessment, the magnitude of the gap between real-time and final estimates is

relatively small compared to the uncertainty estimate around the posterior mean and estimates

of uncertainty typically reported in papers estimating r-star, e.g., Clark and Kozicki (2005),

Laubach and Williams (2016), and Lubik and Matthes (2015). Furthermore, the real-time
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estimate of r-star remained within the 68% credible intervals throughout the sample period

considered. The width of the estimated 68% (and 90%) intervals from the Base model has been

remarkably stable between 0.9 and 1.2 percent (1.5 and 2.0 percent) in the last 25 years. For

reference, the typical estimates of 90% bands from popular models such as LW and Lubik and

Matthes (2015) have a width averaging more than 4% and 3.5%, respectively.60 Given that

the 68% and 90% credible intervals are significantly narrower compared to typical estimates

reported elsewhere in the literature, we view the evidence of our real-time r-star remaining

inside the estimated credible intervals as encouraging.

Overall, the real-time estimates of stars and forecast evaluation based on the past 20 years of

data provide empirical evidence supporting the competitive forecasting and real-time properties

of the Base model. Unfortunately, the high dimensionality of our models and the limited

availability of real-time data on nominal wage inflation prevent the evaluation of the models’

forecasting properties over a more extended historical sample.

6. The Implications of the COVID-19 Pandemic For Stars

At the time of writing this paper, the global economy is in the midst of an ongoing global

pandemic crisis (GPC), which has continued to inflict significant disruption on economic activity

both in the US and globally. The GPC, which started in early 2020, contributed to extreme

movements in many US macroeconomic indicators, including those used in this paper. For

instance, US real GDP growth in quarterly annualized terms declined from -5% in Q1 to -

31% in Q2, the deepest contraction in the post-war data (COVID-19 recession). And in Q3,

growth rebounded to +33%, a record increase in the post-war data. These extreme movements,

which were several standard deviations away from their historical averages, contributed to the

breakdown of many conventional time-series models, especially the time-invariant VAR models

estimated with monthly data; see Lenza and Primiceri (2020) and Carriero, Clark, Marcellino,

and Mertens (2021).

Up to this point, our analysis has focused on the pre-GPC data. In light of recent work

documenting the difficulties of the standard time-series models handling pandemic data, we are

naturally curious to see how our two main models respond to the COVID-19 GPC data. What

do data during the pandemic imply for estimates of stars, or, in other words, what are the

estimated long-run consequences of the GPC data? As we illustrate shortly, the short answer

to the first question is that both models, Base and Base-NoSurv, handled the pandemic data

well. But the Base model, in our judgment, did a better job than the Base-NoSurv.

The answer to the second question is a bit complicated. But, briefly, the models indicate

that, at the moment, the long-run consequences of the economic developments related to the

pandemic are highly uncertain. We view this latter characterization as a reasonable one. Let’s

60We note that recent approaches to model r-star such as JM and Del Negro et al. (2017) also generate precise
intervals similar to ours, with JM marginally less precise and Del Negro and all measurably more precise than
ours.
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take long-term productivity growth. Based on past research, pandemics are associated with a

notable hit to long-term productivity growth; think of disruptions to schools and universities,

the loss of skilled and knowledgeable workers, and dramatic shifts in demand and supply that

necessitate costly and time-consuming adjustments.61 On the other hand, current research

argues that recent technological advances and the unique nature of the GPC – which has raised

prospects of recurrent pandemics – will lead to an acceleration in automation (see Leduc and

Liu, 2020) and, in turn, boost long-term productivity. The net effect of these opposing factors on

p-star is uncertain, and our model-based estimates of p-star reflect this via increased assessment

of uncertainty around p-star, as shown in online appendix A8.

We believe that the rich features of our models helped position them, especially the Base

model, to handle the pandemic data quite well.62 In the interests of brevity, we refer the reader

to online appendix A8 for the results comparing the pre-pandemic and pandemic periods, and

results comparing estimates from the Base model to outside sources, including the CBO and

Morley and Wong (2020).

7. Conclusion

This paper takes up the challenge of developing a large-scale UC model to jointly estimate

the dynamics of inflation, nominal wages, labor productivity, the unemployment rate, real GDP,

interest rates, and their respective survey expectations to back out estimates of the long-run

counterparts of these variables. These long-run counterparts include potential output (gdp-

star), the growth rate of potential output (g-star), the equilibrium levels of the unemployment

rate (u-star), the real short-term interest rate (r-star), price inflation (pi-star), labor produc-

tivity growth (p-star), and nominal wage inflation (w-star). The structure of our UC model is

guided by economic theory and past empirical research, which has highlighted strong evidence

of changing macroeconomic relationships and allows for stochastic volatility in the shocks to

cyclical components of a range of macroeconomic indicators. Accordingly, our model structure

permits time-varying parameters and stochastic volatility in the main model equations.

An essential feature of our model structure is the explicit role of long-run survey forecasts

in possibly informing the econometric estimation of the stars. Like other researchers, we find

that adding information from surveys is an important element in yielding reasonable estimates

of the stars. Incorporating a rich set of empirical features leads to a very flexible but heavily

parameterized model. To feasibly estimate this model (and its variants), we use Bayesian

techniques, specifically the efficient sampling techniques developed in Chan, Koop, and Potter

(2013), and the precision sampler proposed in Chan and Jeliazkov (2009).

61Aucejo, French, Ugalde Araya, and Zafar (2020) document the negative impact of COVID-19 on students’
academic performance.

62The rich features include: (1) modeling the changing economic relationships via the implementation of time-
varying parameters; (2) allowing for the changing variance of the innovations to various equations (i.e., SV); (3)
imposing bounds on some of the random walk processes; (4) joint modeling of the output gap and unemployment
gap in particular; and (5) the use of survey forecasts;
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We explore the empirical relevance of various features incorporated in our baseline model

by estimating several variants of the baseline model. The Bayesian model comparison results

provide strong support to model features informed by past research and confirm findings doc-

umented elsewhere. For instance, we find that allowing for SV in the model equations is very

important. Similarly, we find economically and statistically significant evidence of a time-

varying price Phillips curve, wage Phillips curve, the evolving cyclicality of labor productivity,

a changing pass-through relationship between wages and prices, and evolving persistence in

price inflation and wage inflation gaps. Given the richness of our model, we document an ex-

pansive set of empirical results that we hope will prove helpful for both applied and theoretical

macroeconomists alike.

Our estimates of the stars generally echo the contours of stars documented elsewhere in the

literature – estimated using smaller-scale UC models – but at times the estimates of the stars are

different, and these differences can matter for policy. We show significant improvements in the

precision of the stars’ estimates by bringing in additional information from survey expectations.

The resulting precision estimates are on a par with recent studies highlighting the improved

precision of stars derived from their approaches. We also show that our baseline model held

up well when including the COVID-19 pandemic data. The rich set of features endowed in

our UC model helped handle the pandemic data without any difficulties. Lastly, we document

the competitive real-time forecasting properties of both our main model and, separately, the

estimates of the stars, if they were to be used as steady-state values in external models.
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Fig. 1. Visual Overview of Interactions Between Blocks

Notes: The solid lines represent a contemporaneous relationship between the element(s) of the

blocks. LR link denotes long-run relationship, i.e., link between stars.
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Table 1: Description of Model Specifications

Panel (a): Main Models

Model Description

Base Full model as formulated in equations (6) through (39)

Base-NoSurv Model as defined by baseline but excluding equations linking surveys to

stars (i.e., excluding 9, 10, 15, 16, 26, 27, 38 and 39).

Aim: assess the usefulness of survey data

Panel (b): Auxiliary Models

Base-W*RW Base but replaces eq. (28) with an RW assumption for W ∗ as defined in eq. (28b).

Aim: assess the support for the theoretical restriction W ∗ = π∗ + P ∗

Base-PT-Wages-to-Prices Base but replaces eq. (21) with eq. (21b) .

Aim: assess the usefulness of allowing for pass-through from wages to prices

(for reference, Base allows for pass-through from prices to wages)

Base-NoPT Base but replaces eq. (29) with eq. (29b).

Aim: assess the usefulness of inclusion of wage inflation in the price equation

AND the inclusion of price inflation in the wage equation.

Base-NoSurv-NoPT Base w/o surveys and replaces eq. (29) with eq. (29b).

Aim: usefulness of inclusion of wage inflation in the price equation

AND the inclusion of price inflation in the wage equation in a Base-NoSurv.

Base-P*CycOutputGap Base but replaces eq. (17) with eq. (17b).

Aim: assess empirical link between output gap and productivity gap and

whether data support inclusion of output gap instead of unemployment gap.

Base-NoR*Surv Base but excludes survey expectations of r∗; i.e., removes eq. (38) and eq. (39).

Aim: assess specifically the marginal value of survey expectations of r∗

Base-NoR*Surv-NoTRule Base but excludes (1) survey expectations of r∗, i.e., removes eq. (38) and eq. (39);

and (2) policy rule eq. (34).

Aim: assess the marginal value of the policy rule equation to the model.

Base-R*RW Base but replaces eq.(36) and eq.(37) with a RW assumption for r∗ as in eq. (36b).

Aim: assess the support for the theoretical link between r∗ and g∗.

Base-NoSurv-R*RW Base-NoSurv but replaces eq.(36) and eq.(37) with an RW for r∗ as in eq. (36b).

Aim: assess support for the link between r∗ and g∗ in a spec. w/o survey data.

Base-R*AR Base but replaces eq. (37) with AR assumption for D.

Aim: support of r∗ defined as comb. of permanent and transitory components.

Base-NoSurv-R*AR Base-NoSurv but replaces eq. (37) with AR assumption for D

Aim: support of r∗ defined as comb. of permanent and transitory components.

Base-NoSurv-R*TightPrior Base specification but tighter prior for std. of the shock to process D.

Aim: assess the impact on r∗ estimate of using a tighter prior for D.

Base-NoSV Base specification but with no SV in any of the measurement equations.

Aim: assess the importance of stochastic volatility in shock variances.

Base-NoBoundU* Base specification without the bounds on the U∗ process in eq. (8).

Aim: assess empirical support for imposing bounds on U∗.
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Table 2: Parameter Estimates

Parameter Parameter description Posterior estimates

Base Base-NoSurv

Mean 5% 95% Mean 5% 95%

ar Coefficient on interest-rate gap -0.069 -0.141 0.002 -0.054 -0.130 0.015

ρg1 + ρg2 Persistence in output gap 0.738 0.678 0.797 0.732 0.669 0.794

ρu1 Lag 1 coefficient on UR gap 1.283 1.238 1.327 1.277 1.232 1.322

ρu2 Lag 2 coefficient on UR gap -0.504 -0.542 -0.466 -0.503 -0.540 -0.466

ρu1 + ρu2 Persistence in UR gap 0.778 0.736 0.821 0.774 0.733 0.814

ρp Persistence in productivity gap -0.005 -0.118 0.110 -0.001 -0.119 0.115

m = ζ
4 Relationship between r* and g* 0.701 0.621 0.784 0.390 0.270 0.560

ρi Persistence in interest-rate gap 0.879 0.838 0.917 0.860 0.816 0.904

λi Interest rate sensitivity to UR gap -0.229 -0.278 -0.180 -0.243 -0.293 -0.194

κi Interest rate sensitivity to inflation 0.061 0.014 0.107 0.085 0.035 0.134

λg Output gap response to UR gap -0.457 -0.580 -0.339 -0.454 -0.575 -0.333

φu UR gap response to Output gap -0.108 -0.130 -0.086 -0.118 -0.140 -0.096
(1−ρu1−ρu2 )

φu
Implied Okun’s Law -2.054 -2.327 -1.803 -1.929 -2.179 -1.699

βg Link between g* and survey 0.929 0.774 1.082 — — —

βu Link between u* and survey 0.988 0.919 1.055 — — —

βr Link between r* and survey 1.018 0.923 1.117 — — —

βπ Link between π∗ and survey 0.991 0.912 1.070 — — —

σ2
π∗ Variance of the shocks to π∗ 0.1212 0.1002 0.1412 0.1272 0.0842 0.1822

σ2
p∗ Variance of the shocks to p∗ 0.1452 0.1112 0.1832 0.1412 0.1092 0.1762

σ2
u∗ Variance of the shocks to u∗ 0.0752 0.0642 0.0892 0.0842 0.0712 0.1002

σ2
gdp∗ Variance of the shocks to gdp∗ 0.0182 0.0142 0.0212 0.0212 0.0162 0.0262

σ2
d Variance of the shocks to d 0.0932 0.0772 0.1102 0.1142 0.0842 0.1482

σ2
w∗ Variance of the shocks to w∗ 0.1582 0.1122 0.2152 0.1582 0.1112 0.2202

σ2
ogap Variance of the shocks to Output gap 0.7252 0.6722 0.7812 0.7232 0.6692 0.7802

σ2
u Variance of the shocks to UR gap 0.2682 0.2482 0.2892 0.2652 0.2452 0.2862

σ2
hp Var. of the Volatility – Productivity eq. 0.2742 0.2192 0.3362 0.2732 0.2202 0.3352

σ2
h Var. of the Volatility – Price Inf. eq. 0.2972 0.2372 0.3642 0.2982 0.2382 0.3652

σ2
hw Var. of the Volatility – Wage Inf. eq. 0.3012 0.2372 0.3742 0.3032 0.2392 0.3732

σ2
hi Var. of the Volatility – Interest rate eq. 0.3772 0.2932 0.4692 0.3692 0.2872 0.4542

σ2
λπ Var. of the shocks to TVP λπ 0.0412 0.0322 0.0522 0.0412 0.0322 0.0512

σ2
λw Var. of the shocks to TVP λw 0.0412 0.0322 0.0512 0.0402 0.0322 0.0502

σ2
λp Var. of the shocks to TVP λp 0.0442 0.0342 0.0572 0.0452 0.0342 0.0572

σ2
κw Var. of the shocks to TVP κw, PT 0.0412 0.0322 0.0522 0.0412 0.0322 0.0522

σ2
ρw Var. of the shocks to TVP ρw 0.0422 0.0332 0.0532 0.0422 0.0322 0.0522

σ2
ρπ Var. of the shocks to TVP ρπ 0.0482 0.0372 0.0622 0.0472 0.0362 0.0602

56



Table 3: Bayesian Model Comparison: Main Models and Selected Variants

Base Base-NoSurv Base-R*RW Base-NoSurv-R*RW

MDD of Inflation -366.6 -368.6 -366.8 -370.1

MDD of Productivity -606.9 -607.1 -607.5 -607.4

MDD of Nominal Wage -277.5 -274.3 -278.0 -274.9

MDD of Unemployment -24.6 -21.7 -24.7 -21.8

MDD of Interest rate -216.4 -222.0 -214.0 -215.6

MDD of GDP -279.7 -279.1 -279.8 -279.5

MDD -1771.7 -1772.8 -1770.8 -1769.3

Table 4: Model Comparison: Variants Focused on Unemployment Rate (UR)

Base Base-NoSurv Base-NoBoundU* Bivariate Bivariate+Surv CKP-Adj

MDD of UR -24.6 -21.7 -25.0 -56.5 -46.5 -61.9

Table 5: Model Comparison: Variants Focused on GDP

Base Base-NoSurv Univariate Bivariate Bivariate+Surv

MDD of GDP -279.7 -279.1 -296.5 -280.4 -281.9

Table 6: Model Comparison: Variants Focused on Labor Productivity

Base Base-NoSurv Base-W*RW Base-P*CycOutputGap Base-NoSV

MDD of Productivity -606.9 -607.1 -603.5 -608.1 -633.4

MDD of model -1771.7 -1772.8 -1790.8 -1773.8 -2024.3

Table 7: Model Comparison: Variants Focused on Nominal Wages

Base Base-NoSurv Base-W*RW Base-NoPT Base-NoSV

MDD of Nominal wages -277.5 -274.3 -277.7 -281.5 -344.3

MDD of model -1771.7 -1772.8 -1790.8 -1776.3 -2024.3
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Fig. 2. Full Sample Estimates for Unemployment Rate Block

Notes: The posterior estimates are based on the full sample (from 1959Q4 through 2019Q4).

In panel (e), CKP Adj. refers to the bivariate model of inflation and the unemployment rate

as in CKP but with no bounds on pi-star.
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Fig. 3. Full Sample Estimates for Cyclical Unemployment

Notes: The posterior estimates are based on the full sample (from 1959Q4 through 2019Q4).

The shaded areas represent NBER recession dates.
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Fig. 4. Full Sample Estimates for Output Block

Fig. 5. Model-based Output Gap vs. CBO
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Fig. 6. Full Sample Estimates for Productivity Block

Notes: The posterior estimates are based on the full sample (from 1959Q4 through 2019Q4).
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Fig. 7. Full Sample Estimates for Price Inflation Block

Notes: The posterior estimates are based on the full sample (from 1959Q4 through 2019Q4).

Table 8: Model Variants for Price Inflation
Model variant MDD of Price inflation MDD Model

Base -366.6 -1771.7

Base-NoSurv -368.6 -1772.8

Base-W*RW -367.0 -1790.8

Base-PT-Wages-to-Prices -366.7 -1771.4

Base-NoPT -365.2 -1776.3

Base-NoSV -413.9 -2024.3
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Fig. 8. Full Sample Estimates for Nominal Wage Block

Notes: The posterior estimates are based on the full sample (from 1959Q4 through 2019Q4).
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Fig. 9. Wage Persistence, Wage Phillips Curve, Pass-through from Prices, and SV

Notes: The posterior estimates are based on the full sample (from 1959Q4 through 2019Q4).
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Fig. 10. Full Sample Estimates for Interest Rate Block

Notes: The posterior estimates are based on the full sample (from 1959Q4 through 2019Q4).

In the top panel, the plot labeled ”survey exp.” is an implied estimate: inferred from the Blue

Chip survey long-run estimates of the GDP deflator and short-term interest rates (3-month

Treasury bill) using the long-run Fisher equation. Specifically, the long-run forecast of 3-month

Treasury bill less the long-run forecast of GDP deflator. To this differential, we add +0.3 to

reflect the average differential between the federal funds rate and the 3-month Treasury bill.
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Fig. 11. More Estimates for Interest Rate Block

Table 9: Model variants for Interest Rate
Model variant MDD of Interest rate MDD Model

Base -216.4 -1771.7

Base-NoSurv -222.0 -1772.8

Base-R*RW -214.0 -1770.8

Base-NoSurv-R*RW -215.6 -1769.3

Base-NoSurv-R*TightPrior -232.0 -1773.6
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Fig. 12. Real-time Recursive Estimates of Stars: Base Model

Notes: The plots labeled Base are posterior estimates reflecting information in the full sam-

ple (from 1959Q4 through 2019Q4). The plots labeled Base:RealTime are posterior estimates

reflecting information available at a given point in time (i.e., truly real time).
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Table 10: Real-Time Forecasting Accuracy: Base vs. Base-NoSurv

Panel A: Point Forecast Accuracy (Recursive evaluation: 1999.Q1-2019.Q4)

Relative RMSE: RMSE Base / RMSE BaseNoSurv

h=4Q h=8Q h=12Q h=16Q h=20Q

Real GDP 1.07* 1.03 1.01 1.00 0.99

PCE Inflation 0.96 0.94* 0.91* 0.89 0.88*

Productivity 0.98* 0.98 0.97 0.98* 0.97

Nominal Wage (AHE) 0.98 1.01 1.05 1.05 1.02

Unemployment Rate 1.07* 1.05* 1.03* 1.02* 1.00

Shadow FFR 0.98 1.00 1.00 0.99 0.98

Panel B: Density Forecast Accuracy (Recursive evaluation: 1999.Q1-2019.Q4)

Relative Log Predictive Score (LPS): LPS Base - LPS BaseNoSurv

h=4Q h=8Q h=12Q h=16Q h=20Q

Real GDP -0.003* -0.002* -0.002* -0.001* -0.001*

PCE Inflation 0.018* 0.020* 0.025* 0.027* 0.026*

Productivity 0.001 0.002* 0.002* 0.002* 0.003*

Nominal Wage (AHE) 0.017* 0.016* 0.018* 0.018* 0.019*

Unemployment Rate -0.003 0.005 0.009* 0.012* 0.013*

Shadow FFR 0.020* 0.007* 0.003 0.000 0.000

Notes: The top panel compares the point forecast accuracy of the Base model with the Base-NoSurv model. Numbers less than 1 indicate

that the Base model is more accurate on average. The bottom panel reports the corresponding density forecast accuracy performance. A

positive value (for the relative mean predictive log score) suggests that the Base model is on average more accurate. The log predictive

scores are computed using parametric normal approximation. The table reports statistical significance based on the likelihood-ratio test of

Amisano and Giacomini (2007) for the density forecast accuracy, and based on the Diebold-Mariano and West test (with the lag h− 1

truncation parameter of the HAC variance estimator) for the point forecast accuracy. The test statistics for the likelihood-ratio test use a

two-sided t-test. In the case of the Diebold-Mariano and West test, the test statistics use two-sided standard normal critical values for

horizons less than or equal to 8 quarters, and two-sided t-statistics for horizons greater than 8 quarters. *up to 10% significance level.
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Gaĺı, Jordi (2011). “The return of the wage Phillips curve.” Journal of the European Economic

Association, 9(3), pp. 436–461. doi:10.1111/j.1542-4774.2011.01023.x.
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